
Model
We experimented different setups using the findings from the individual experiments to decide
the final model. F1 score was used as a metric because the text should not be classified to wrong
classes or miss important classes.

From the results of the individual experiments, we discovered that the deep learning approach is
superior to the shallow learning approach. Therefore we decided to choose one model from
LSTM, GRU and CNN. As having many classes is better for our case, we experimented with a
combination of all levels of classes. It gave a reasonable accuracy so we decided to use all levels
for the final model.

Following setups were experimented to choose the final model.

Balancing data
Balanced
Not balanced

Preprocessing
Tokenize
Remove punctuation, remove stopwords
Filter, remove stopwords

Model
LSTM
GRU
CNN

Optimizers
RMSprop
Adam

Activation function
Sigmoid
Tanh

The best setup found from the experiments are shown in bold.

In [2]: import pandas as pd 
import numpy as np 
import nltk 
nltk.download('stopwords') 
from nltk.corpus import stopwords 
import string 
from tensorflow.keras.preprocessing.text import Tokenizer 
from tensorflow.keras.preprocessing.sequence import pad_sequences 
from tensorflow.keras.models import Sequential 
from tensorflow.keras.layers import Embedding, Dense, SpatialDropout1D, GRU, GlobalA
from sklearn.preprocessing import MultiLabelBinarizer 
!pip install tensorflow_addons 
import tensorflow_addons as tfa 
import matplotlib.pyplot as plt 
%matplotlib inline 
from sklearn.metrics import f1_score, roc_auc_score 
from joblib import dump 



[nltk_data] Downloading package stopwords to 
[nltk_data]     C:\Users\rina9\AppData\Roaming\nltk_data... 
[nltk_data]   Package stopwords is already up-to-date! 
Requirement already satisfied: tensorflow_addons in c:\users\rina9\anaconda3\envs\co
m3029\lib\site-packages (0.12.1) 
Requirement already satisfied: typeguard>=2.7 in c:\users\rina9\anaconda3\envs\com30
29\lib\site-packages (from tensorflow_addons) (2.12.0) 

['mlb.joblib']

In [3]: train = pd.read_csv('./data/DBPEDIA_train.csv') 
test = pd.read_csv('./data/DBPEDIA_test.csv') 
val = pd.read_csv('./data/DBPEDIA_val.csv') 

In [4]: train['Classes'] = train['l1'] + " " + train['l2'] + " " + train['l3'] 
test['Classes'] = test['l1'] + " " + test['l2'] + " " + test['l3'] 
val['Classes'] = val['l1'] + " " + val['l2'] + " " + val['l3'] 

In [5]: train = train.drop(['l1','l2','l3'], axis=1) 
test = test.drop(['l1','l2','l3'], axis=1) 
val = val.drop(['l1','l2','l3'], axis=1) 

In [6]: train['Classes'] = train['Classes'].str.split()
test['Classes'] = test['Classes'].str.split() 
val['Classes'] = val['Classes'].str.split() 

In [7]: mlb = MultiLabelBinarizer() 
train_y = mlb.fit_transform(train['Classes']) 
test_y = mlb.transform(test['Classes']) 
val_y = mlb.transform(val['Classes']) 

In [8]: dump(mlb, 'mlb.joblib') 

Out[8]:

In [ ]: # Remove PUNCTUATION 
def remove_punctuation(text): 
  table = str.maketrans("","", string.punctuation) 
  return text.translate(table) 
 
# Remove STOPWORDS & LOWERCASE 
stops = set(stopwords.words("english")) 
def remove_stopwords(text): 
  text = [word.lower() for word in text.split() if word.lower() not in stops and wor
  return " ".join(text) 

In [ ]: train['text'] = train.text.map(lambda x: remove_punctuation(x)) 
train['text'] = train['text'].map(remove_stopwords) 
test['text'] = test.text.map(lambda x: remove_punctuation(x))
test['text'] = test['text'].map(remove_stopwords) 
val['text'] = val.text.map(lambda x: remove_punctuation(x)) 
val['text'] = val['text'].map(remove_stopwords) 

In [ ]: tokenizer = Tokenizer(num_words=250000) 
tokenizer.fit_on_texts(train.text) 



After removing punctuations and stopwords, the texts are tokenized with the maximum number
of words set to 250,000, which is about a half of the total number of words in the dataset.
Tokenized texts are then transformed to sequences of integers and padded to the length of 500.
The classes are one-hot encoded.

Epoch 1/10 
3765/3765 [==============================] - 1822s 475ms/step - loss: 0.0389 - f1_sc
ore: 0.3723 - val_loss: 0.0072 - val_f1_score: 0.4880 
Epoch 2/10 
3765/3765 [==============================] - 1816s 482ms/step - loss: 0.0058 - f1_sc
ore: 0.4902 - val_loss: 0.0038 - val_f1_score: 0.4923 
Epoch 3/10 
3765/3765 [==============================] - 1804s 479ms/step - loss: 0.0032 - f1_sc
ore: 0.4941 - val_loss: 0.0031 - val_f1_score: 0.4936 
Epoch 4/10 
3765/3765 [==============================] - 1804s 479ms/step - loss: 0.0024 - f1_sc
ore: 0.4956 - val_loss: 0.0028 - val_f1_score: 0.4940 
Epoch 5/10 
3765/3765 [==============================] - 1806s 480ms/step - loss: 0.0019 - f1_sc
ore: 0.4967 - val_loss: 0.0027 - val_f1_score: 0.4944 
Epoch 6/10 
3765/3765 [==============================] - 1787s 475ms/step - loss: 0.0015 - f1_sc
ore: 0.4978 - val_loss: 0.0027 - val_f1_score: 0.4949 
Epoch 7/10 
3765/3765 [==============================] - 1790s 476ms/step - loss: 0.0012 - f1_sc
ore: 0.4982 - val_loss: 0.0028 - val_f1_score: 0.4948 
Epoch 8/10 
3765/3765 [==============================] - 1792s 476ms/step - loss: 9.9089e-04 - f
1_score: 0.4988 - val_loss: 0.0029 - val_f1_score: 0.4949 

 
train_data = tokenizer.texts_to_sequences(train.text) 
test_data = tokenizer.texts_to_sequences(test.text) 
val_data = tokenizer.texts_to_sequences(val.text) 
word_index = tokenizer.word_index

In [22]: max_words = 250000 
max_length = 500 

In [ ]: train_data = pad_sequences(train_data, maxlen=max_length, padding="post", truncating
test_data = pad_sequences(test_data, maxlen=max_length, padding="post", truncating="
val_data = pad_sequences(val_data, maxlen=max_length, padding="post", truncating="po

In [23]: def get_model(embedding_dim, activation, loss, optimizer): 
 
  model = Sequential() 
  model.add(Embedding(max_words, embedding_dim, input_length=max_length)) 
  model.add(SpatialDropout1D(0.3)) 
  model.add(Bidirectional(GRU(100, return_sequences=True))) 
  model.add(GlobalAveragePooling1D()) 
  model.add(Dense(298, activation='sigmoid')) 
 
  model.compile(loss=loss, optimizer=optimizer, metrics=[tfa.metrics.F1Score(298, 'm
  return model 

In [24]: model = get_model(embedding_dim=512, loss='binary_crossentropy', optimizer='RMSprop'

In [ ]: history = model.fit(train_data, train_y, epochs=10, batch_size=64, validation_data=(



Epoch 9/10 
3765/3765 [==============================] - 1788s 475ms/step - loss: 8.4480e-04 - f
1_score: 0.4990 - val_loss: 0.0030 - val_f1_score: 0.4951 
Epoch 10/10 
3765/3765 [==============================] - 1783s 474ms/step - loss: 6.8457e-04 - f
1_score: 0.4995 - val_loss: 0.0032 - val_f1_score: 0.4953 

The final model was trained for 10 epochs with a batch size of 64. The calculation of the f1 score
using the tensorflow_addons package did not perform as expected so we decided to use the
function in the scikit-learn package instead.

Test result: 95.8% 
ROC AUC score: 99.9% 

WARNING:absl:Found untraced functions such as gru_cell_7_layer_call_fn, gru_cell_7_l
ayer_call_and_return_conditional_losses, gru_cell_8_layer_call_fn, gru_cell_8_layer_
call_and_return_conditional_losses, gru_cell_7_layer_call_fn while saving (showing 5 
of 10). These functions will not be directly callable after loading. 
WARNING:absl:Found untraced functions such as gru_cell_7_layer_call_fn, gru_cell_7_l
ayer_call_and_return_conditional_losses, gru_cell_8_layer_call_fn, gru_cell_8_layer_
call_and_return_conditional_losses, gru_cell_7_layer_call_fn while saving (showing 5 
of 10). These functions will not be directly callable after loading. 
INFO:tensorflow:Assets written to: model_first\assets 
INFO:tensorflow:Assets written to: model_first\assets 

Task 1: Model Serving Options
There are various model serving options that can be used for deploying our model as a web
service.

Flask is a lightweight, micro web framework built in Python to deploy web applications. It can be
used with Gunicorn and Nginx. Flask works as an application server which communicates with
the model. Gunicorn gives the ability to build the web service through HTTP server and Nginx
setup the environment on a specific port.

TensorFlow Serving another option that can be used for web serving. It handles minibatching
and is optimized for speed as it can use GPUs. It is specifically made for models so the latency is
much smaller.

TorchServe provides metrics for monitoring, RESTful endpoints for application integration and
supports ML environments such as Amazon SageMaker, etc. It is flexible and easy-to-use but it

In [ ]: preds = model.predict(test_data) 

In [ ]: y_preds = np.where(preds < 0.9, 0, 1) 
y_true = test_y 
f1 = f1_score(y_true, y_preds, average='micro')*100 
print("Test result: %0.1f%%" % f1) 
roc_auc = roc_auc_score(y_true, preds, 'micro') * 100 
print("ROC AUC score: %0.1f%%" % roc_auc) 

In [25]: name = "first" 

In [26]: filename = "model_{}".format(name) 
model.save(filename) 



can only be used for serving PyTorch models.

Django is a full-stack web framework built in Python to deploy web applications. It is better for
building full-featured web applications with lots of functionalities if the required ML service is
simple. For the same functionality, Django needs 2x more lines of code than Flask.

Although Flask has the bare minimum for a web server, it provides everything required for
building a basic web service. For our case, using Flask for web application with the Waitress
WSGI to make it into a web service, would be sufficient.

Task 2: Web Service
We developed a web application (server.py) that allows a user to test classified articles and to
classify new articles. There are three tabs on the web page: Home, Data and Models.

Home
This tab is the first tab that is displayed when the user access to the web page. 

Data
This tab allows the user to add, remove and view data. There are two types of data: Testing data
and Live data. Both are segregated into 2 different storage devices. Testing data is used for the
purpose of evaluating and collecting performance metrics from the endpoint models. Whereas
live data represents data that is being used exclusively for the purpose of prediction.

The class used to encapsulate the storage and basic interactions of the data is defined here:

In [1]: class Storage: 
    def __init__(self): 
        self.list = [] 
        self.count = 0 
        self.mlb = MultiLabelBinarizer() 
 
    def load_file(self, filename, isLive = False): 
        data = pd.read_csv(filename) 
        texts = data['text'] 
        if not isLive: 
            data['Classes'] = data['l1'] + " " + data['l2'] + " " + data['l3'] 
            data = data.drop(['l1','l2','l3'], axis=1) 



In this class, the data is contained within a single list attribute, with an integer counter keeping
track of the cumulative number of data entries. This is also used to issue ID numbers. The
"load_file" method takes in a CSV file and extracts the article text and each hierarchical label.
These labels are then concatenated together and transformed into a multi-label format and are
stored along with each text entry for test data.

For live data only the article text is stored, as the purpose of live data is to handle real-world
predictions and not to test the performance of the model.

The "add" method appends a single record to the storage list. And the "fetch_all" method
returns a dataframe complete with every record held within the current storage object.

Data Operations
The following is a set of actions the user can take to interact with the data storage:

View Data

The user can view the loaded data as a table. The table contains the data IDs, creation
timestamps, article texts, expected labels and predicted labels of the wiki entries. The web page
is difficult to load when it tries to load too much data so it is set to display maximum of 65000
entries.

            data['Classes'] = data['Classes'].str.split() 
             
            display_labels = data['Classes'].to_numpy() 
            labels = self.mlb.fit_transform(data['Classes']) 
            print("labels", labels.shape) 
            for i in range(len(texts)): 
                self.add(texts[i], labels[i], display_labels[i]) 
             
        else: 
            for i in range(len(texts)): 
                self.add(texts[i], None, None) 
        print("Loaded Data") 
         
    def add(self, text, label, display_label): 
        self.count += 1 
        self.list.append(Article(self.count, datetime.now(), text, label, display_la
     
    def fetch_all(self): 
        if self.count == 0: 
            return "Empty"
        output = [] 
        for article in self.list: 
            output.append({'article_id': article.id, 
                           'created_at': article.created_at, 
                           'article_text': article.text, 
                           'display_label': article.display_label, 
                           'prediction': self.mlb.inverse_transform(np.expand_dims(a
                           'label': article.label}) 
        return pd.DataFrame.from_dict(output) 



The flask request method to handle this is shown above. It first checks two exception cases: that
the form is sending valid information in the form of the name of the storage being viewed, and
that the storage objects exist. It then calls the "fetch_all()" method as defined previously to retain
a dataframe to display the data.

View Metrics

This displays the class distributions in pie charts. There are three pie charts to display each level
of classes. 

In [3]: #Views data 
#@app.route('/data/view', methods=['POST']) 
def view_data(): 
    c = request.form['dataName'] 
    try: 
        if c not in ["test", "live"]: return render_template('data.html', outcome="F
        if c == "test": 
            table = test_storage.fetch_all() 
        else: 
            table = live_storage.fetch_all() 
        del table['label'] 
    except Exception: 
        return render_template('data.html', outcome="Storage Error") 
         
    return render_template('data_view.html', table=table) 

In [1]: def pieChart(name, lvl, labels): 
    plt.figure(figsize=(20,10)) 
    circle=plt.Circle( (0,0), 0.7, color='white') 
    plt.pie(labels, labels=labels.index, autopct='%1.1f%%') 
    p=plt.gcf() 
    p.gca().add_artist(circle) 
    plt.title(str(name)+" Class Distribution Level "+lvl) 
    time = datetime.now().strftime("%H%M%S") 
    plt.savefig('static/'+str(name)+lvl+time+'_class_dist_plot.png') 
    plt.clf() 
    return '/static/'+str(name)+lvl+time+'_class_dist_plot.png' 



To plot the label distributions, we decided to use a pie chart. However, attempting to use a
single pie chart to display all of the concatenated labels proved to be difficult to read. We
therefore decided to divide the labels by hierarchy, giving 3 different pie charts corresponding
to each level. The matplotlib module was used to plot the chart. This option is only available for
test data, as the ground-truth labels are not recorded for live data entries.

Load CSV Data

The user can upload CSV file that contains test data. The file should have the correct headers as
can be seen in the template file. Each text in the data must be classified with the classes
according to the DBPedia Classes.

In [2]: #Views metrics for a dataset 
#@app.route('/data/metrics', methods=['POST']) 
def metrics_data(): 
    c = request.form['dataMetricsName'] 
    try: 
        if c not in ["test", "live"]: return render_template('data.html', outcome="F
        if c == "live": 
            table = live_storage.fetch_all() 
            class_dist = saveClassFig(table, "Live") 
        else: 
            return render_template('data.html', outcome="Form Error") 
    except Exception: 
        return render_template('data.html', outcome="Storage Error") 
    print("Rendering") 
    return render_template('data_metrics.html', label_figs=class_dist) 

In [ ]: #Upload CSV Data 
#@app.route('/data/load/upload', methods=['POST']) 
def upload_data(): 
    try: 
        if request.method == 'POST': 
            if 'file' not in request.files: 
                print('No file part') 
                return redirect(request.url) 
            file = request.files['file'] 
            if file.filename == '': 
                print('No selected file') 
                return redirect(request.url) 
            if file and '.' in file.filename and file.filename.rsplit('.', 1)[1].low
                c = request.form['dataUploadName'] 
                if c == "test": 
                    test_storage.load_file(file) 



To load data into the web application, we decided to take a primary approach. This approach
involves loading in raw data from CSV files. To load them, from the data tab the user will select
"load data". From here, they will be redirected to a file upload form where they may select a CSV
data file from their local file system. Upon clicking "upload", the request will be checked to see if
the file is A) a CSV file and is B) in the correct format. Should either of these prove false, the
request will be rejected. If not, they will be processed and loaded into their respective storage
device. The formatted data from storage will then be fetched, and the user will be redirected to
the view data page to check what they have chosen to upload.

Download Template

To help the user understand what format the uploaded CSV files should take in terms of column
headings, the user can download a template CSV file that gives column headings and example
data entries.

                    table = test_storage.fetch_all() 
                else: 
                    live_storage.load_file(file, isLive=True) 
                    table = live_storage.fetch_all() 
                return render_template('upload.html', outcome="File Upload Successfu
    except Exception: 
        return render_template('upload.html', outcome="File Upload Error") 
         
    return render_template('upload.html') 
 
#Loads data and then views it 
#@app.route('/data/load', methods=['POST']) 
def load_data(): 
    c = request.form['dataLoadName'] 
    if c not in ["test", "live"]: return render_template('data.html', outcome="Form 
    print("Rendering") 
    return render_template('upload.html', name=c) 

In [ ]: #Download CSV Template 
#@app.route('/data/template', methods=['POST']) 
def download_template(): 
    try: 
        c = request.form['dataTemplateName'] 
        if c not in ["test", "live"]: return render_template('data.html', outcome="F
        if c == "test": 
            return send_file('test_template.csv', 
                     mimetype='text/csv', 



To facilitate this, a button is added to each storage type. When the user chooses to press these,
the web application fetches the corresponding template file from the local server file system and
downloads them for the user. They may then choose to use these to fill out additional CSV files
for potential bulk updates in the test/live data. The contents for each of these templates are
displayed here.

Test:  Live: 

Delete Data

The user can delete the data that is currently being stored. 

                     attachment_filename='template.csv', 
                     as_attachment=True) 
        else: 
            return send_file('live_template.csv', 
                     mimetype='text/csv', 
                     attachment_filename='template.csv', 
                     as_attachment=True) 
    except Exception: 
        return render_template('data.html', outcome="Storage Error") 

In [ ]: #Deletes all data in storage x 
#@app.route('/data/delete', methods=['POST']) 
def delete_data(): 
    c = request.form['dataRemoveName'] 
    try: 
        if c not in ["test", "live"]: return render_template('data.html', outcome="F
        if c == "test": 
            test_storage.list = [] 
            test_storage.count = 0 
        else: 
            live_storage.list = [] 



To delete data, a user may select the "Delete Data" button from the data tab. This will set the
value of the respective storage list to empty, whilst resetting the storage counter.

Download Data

The user can choose to download the data currently held in storage.

To download the stored data, a user may click the "Download Data" button on the data tab. The
server will respond by fetching a dataframe of all the currently stored data from the selected
storage object. It will then convert this dataframe to a CSV format and respond by downloading
the CSV file for the client.

Manually Input Data

            live_storage.count = 0 
    except Exception: 
        return render_template('data.html', outcome="Storage Error") 
    print("Rendering") 
    return render_template('data_view.html', table="Empty") 

In [ ]: #Download Stored Data 
#@app.route('/data/download', methods=['POST']) 
def download_data(): 
    try: 
        c = request.form['dataDownloadName'] 
        if c not in ["test", "live"]: return render_template('data.html', outcome="F
        if c == "test": 
            table = test_storage.fetch_all() 
            del table['label'] 
            csv = table.to_csv(index=False) 
        else: 
            table = live_storage.fetch_all() 
            del table['label'] 
            csv = table.to_csv(index=False) 
        return Response( 
            csv, 
            mimetype="text/csv", 
            headers={"Content-disposition": 
                     "attachment; filename=download.csv"}) 
    except Exception: 
        return render_template('data.html', outcome="Storage Error") 



The user can add a single article using this function. 

For live data, there is an option to manually enter data entries into the application storage via
form. To do this, a user may click on the "Manually Enter Data" button on the data tab. From
there, they will be redirected to a form where the article text may be entered and submitted.

Once submitted, the server will add a single entry to the live storage object. This feature is only
included for the live data as an option to feed raw inputs into the model.

In [1]: #Manually Enter Data 
#@app.route('/data/load/manual', methods=['POST']) 
def manual_data(): 
    c = request.form['dataManualName'] 
    if c not in ["live"]: return render_template('data.html', outcome="Form Error") 
    print("Rendering") 
    return render_template('data_manual.html', target=c, outcome="") 
 
#Manually Enter Data Add 
#@app.route('/data/load/manual/add', methods=['POST']) 
def manual_data_add(): 
    print("manual add") 
    c = request.form['type'] 
    text = request.form['text'] 
    try: 
        if (c not in ["live"]) or (text == ""): return render_template('data_manual.
        live_storage.add(text, None, None)    
    except Exception: 
        return render_template('data_manual.html', outcome="Storage Error") 
    print("Rendering") 
    return render_template('data_manual.html', target=c, outcome="Data Entry Success



Models
This tab allows the user to load in all currently available models and pipelines as well use them
to perform test evaluations or predictions.

The following is the class representation of the model and its pipeline. It encapsulates the two
main functions attributed to it, being evaluation and prediction:

Model Operations
The following is a list of the operations that can be performed with the models in this tab.

Load Models

This allows the user to load new models that have been added to the server file system.

In [ ]: class Model(): 
    def __init__(self, pipeline, name): 
        self.pipeline = pipeline 
        self.name = name 
        self.f1 = None 
        self.roc_auc = None 
        self.performance = None 
 
        self.memory = [] 
        self.cpu = [] 
        self.time = [] 
     
    def evaluate(self, x, y_true): 
        preds = self.pipeline.predict(x)
        y_preds = np.where(preds < 0.9, 0, 1) 
        self.f1 = f1_score(y_true, y_preds, average='micro')*100 
        self.roc_auc = roc_auc_score(y_true, preds, 'micro') * 100 
        return y_preds 
 
    def predict(self, x): 
        preds = self.pipeline.predict(x)
        y_preds = np.where(preds < 0.9, 0, 1) 
        return y_preds 



When the application begins, it declares the "pipelines" global variable. This is used to store a
list of model objects which represents all of the currently loaded pipelines.

In the Models tab the user may choose to press the "Load Models" button, this triggers the load
event which causes the server to search the local file system for directories beginning with
"model_". If this is found, it will also find and load the corresponding pre-processing pipeline
into the application. It will then create a new model object and store it in the pipelines global
variable. This process is repeated for every model found in the file system. Once loaded, the
models tab should look like the following (after loading two pipelines in this example):

In [ ]: #@app.before_first_request 
def declare_vars(): 
    pd.set_option('display.min_rows', 65000) 
    pd.set_option('display.max_rows', 65000) 
    pd.set_option('display.max_columns', None) 
    pd.set_option('display.width', None)
    pd.set_option('display.max_colwidth', 100) 
    global pipelines 
    global test_storage 
    global live_storage 
    pipelines = {} 
    test_storage  = Storage() 
     
    live_storage  = Storage() 
     
#Load All Avaliable Models  
#@app.route('/models/load', methods=['GET']) 
def model_load(): 
    print("Loading Avaliable Models...") 
    try: 
        targets = [name for name in os.listdir(".") if (os.path.isdir(name) and "mod
        for target in targets: 
            pipeline = load("pipeline_"+str(target.replace("model_", ""))+".joblib")
            pipeline.steps.insert(1,['classifier', load_model(target)])  
            pipelines[target.replace("model_", "")] = Model(pipeline, target.replace
        print("Models Loaded!") 
    except Exception: 
 
        return render_template('models.html', models=pipelines, outcome="Pipeline Lo
    return render_template('models.html', models=pipelines) 



Predict Test Data

This classifies the test data that have been uploaded and evaluates the model's performance
using F1 score and ROC AUC score.

In [3]: #Run Model Against Test Data 
#@app.route('/models/run/test', methods=['POST']) 
def model_test(): 
    try: 
        test_data = test_storage.fetch_all() 
        x_test = pd.DataFrame(data={'text': test_data['article_text']}) 
        y_test = test_data['label'] 
        y_test = np.array([a for a in y_test]) 
        thread = ResourceTracker(request.form['modelTestName']) 
        thread.start()     
        pred = pipelines[request.form['modelTestName']].evaluate(x_test, y_test) 
        thread.stop() 
        thread.join()     
        print("Saving Predictions") 
        for i in range(len(pred)): 
            test_storage.list[i].prediction = pred[i] 
        print("Predictions Saved") 
 
        perf_fig = savePerformance(pipelines[request.form['modelTestName']].name, re
        pipelines[request.form['modelTestName']].performance = perf_fig 
    except Exception: 
        return render_template('models.html', models=pipelines, outcome="Model Error



To do this, when the user clicks "Predict Test Data" for any of the loaded models, it will first
retrieve all current test data from storage. I will then feed the test data and labels into the
evaluation method of the pipeline. This will set the objects f1 score and ROC AUC score in
addition to returning a list of all of the predictions made.

In addition to this, before initiating the evaluation, the web application starts an additional
background thread. This purpose is used for the purpose of taking regular measurements of the
model's memory and cpu usage (assuming no available GPUs). Upon the conclusion of the
prediction process, the graph showing these variations is displayed below the model options
(Note the timestamps can be difficult to read after long executions).

This is achieved via the ResourceTracker class that overrides the threading.Thread python object.
It uses the psutil module to take percentage measurements of system resources. The stop
method is used to help the main thread communicate to this thread and to trigger a flag to stop
it. Finally, the predictions made by the model can be viewed within the data view tab:

         
    return render_template('models.html', models=pipelines) 

In [ ]: class ResourceTracker(threading.Thread): 
    def __init__(self,  pipe_name): 
        super(ResourceTracker, self).__init__() 
        self._stop_event = threading.Event() 
        self.flag = False 
        self.pipe_name = pipe_name 
         
    def run(self): 
        while True: 
            pipelines[self.pipe_name].memory.append(psutil.virtual_memory()[2]) 
            pipelines[self.pipe_name].cpu.append(psutil.cpu_percent(4)) 
            pipelines[self.pipe_name].time.append(datetime.now().strftime("%H:%M:%S"
            sleep(1) 
            if self.flag: 
                break 
    def stop(self): 
        self.flag = True 
        self._stop_event.set() 



Predict Live Data

This classifies the live data that have been uploaded. This method simply records the predictions
(as shown above), but does not include any performance metrics like F1 score as the model is
not being evaluated in this case.

The server uses an almost identical response to the live prediction request as the test one.
However, in this case the "prediction()" method for the Model object is called instead of
"evaluate()".

Task 3: Test Results
We have manually tested the web application via a browser and added code to handle
exceptions.

After that, unit testing (unit testing.py) has been done to check the web service performs as
expected. There are 15 tests to check the following actions:

In [ ]: #Run Model Against Live Data 
#@app.route('/models/run/live', methods=['POST']) 
def model_live(): 
    try: 
        live_data = live_storage.fetch_all() 
        x_test = pd.DataFrame(data={'text': live_data['article_text']}) 
        thread = ResourceTracker(request.form['modelLiveName']) 
        thread.start()     
        pred = pipelines[request.form['modelLiveName']].predict(x_test) 
        thread.stop() 
        thread.join() 
        print(pipelines[request.form['modelLiveName']].time, pipelines[request.form[
         
        print("Saving Predictions") 
        for i in range(len(pred)): 
           live_storage.list[i].prediction = pred[i] 
        print("Predictions Saved") 
 
        perf_fig = savePerformance(pipelines[request.form['modelLiveName']].name, re
        pipelines[request.form['modelLiveName']].performance = perf_fig 
    except Exception: 
        return render_template('models.html', models=pipelines, outcome="Model Error
 
    return render_template('models.html', models=pipelines) 



Open Home tab
Open Data tab
Open Models tab
Open data upload page
Upload CSV file
View data
View metrics
Open live data manual input page
Input live data manually
Download a template
Load models
Predict test data
Predict live data
Delete data
Download data

Example of a unit test:

All of these tests have been performed using the python unittest module.

Every test returned the following response.

The final result can be seen below.

From the result, it can be said that the web service performs as expected.

Task 4: Performance
We have successfully developed a web service that allows a user to classify articles into multiple
classes. The web service allows not only classify articles but also test the articles that have
already been classified. This lets the user to check if the articles have been classified correctly.
Data can be viewed, deleted, and downloaded in CSV format. The user can also check the test
results with both F1 score and ROC AUC score. Templates for uploading data can be

In [4]: def test_get_data(self): 
        tester = app.test_client(self) 
        response = tester.get('/data') 
        print(response) 
        self.assertEqual(response.status_code, 200) 



downloaded via the web service which makes it easier for the user to create their own data file.
After uploading test data, the user can view the class distributions for each level of classes. The
web service let the user to add live data in two ways: manual input and file upload. Enabling the
manual input lets the user to get the classes of an article easily. All versions of the models that
are available on the web service can be loaded and the user can select any model for
predictions. The web service displays the model resource usage including CPU usage and
memory usage for a prediction with a line graph. It handles exceptions that may disrupt the flow
of execution in the web service.

Although there are many useful features as mentioned above, there are some downsides. One of
the downsides of the web service is that it takes time to load models and classify a lot of articles.
Another downside is the test results that have been provided previously get removed when
loading models. Also, there is a limitation for displaying data that it cannot display too many
entries when viewing the data. Displaying this in multiple pages would improve the
performance.

Task 5: Monitoring
As mentioned in Task 2, the user inputs and the model predictions are stored and can be viewed
on the "View Data" page under the Data tab: 

This data can also be downloaded for further use in the Data tab:

In addition to monitoring of data and models, the web service also monitors the memory & CPU
usage for predictions via threading. This is also mentioned in Task 2.

Task 6: CI/CD Pipeline
When adding a new model to the web server, a new pipeline must be created. Following code
creates a pipeline for the new model.



['pipeline_first.joblib']

Name of the pipeline must be the same as the name of the model. For example if the model is
named "model_version1", the name of the pipeline must be "pipeline_version1".

In [27]: from sklearn.base import BaseEstimator, TransformerMixin 
from sklearn.pipeline import Pipeline 

In [28]: class Preprocessor(BaseEstimator, TransformerMixin): 
    def __init__(self, x): 
        self.stops = set(stopwords.words("english")) 
        self.maxlen = 500 
        self.num_words = 250000 
        x['text']  = x.text.map(lambda x: self.remove_punctuation(x)) 
        x['text']  = x['text'].map(self.remove_stopwords) 
        self.tokenizer = Tokenizer(num_words=self.num_words) 
        self.tokenizer.fit_on_texts(x.text)  
 
    def fit(self, x, y=None): 
        x['text'] = x.text.map(lambda x: self.remove_punctuation(x)) 
        x['text'] = x['text'].map(self.remove_stopwords) 
        x = self.to_sequences(x.text) 
        return x 
     
    def transform(self, x): 
        x['text'] = x.text.map(lambda x: self.remove_punctuation(x)) 
        x['text'] = x['text'].map(self.remove_stopwords) 
        x = self.to_sequences(x.text) 
        return x 
     
    def fit_transform(self, x, y): 
        x = x.copy() 
        x['text'] = x.text.map(lambda x: self.remove_punctuation(x)) 
        x['text'] = x['text'].map(self.remove_stopwords) 
        x = self.to_sequences(x.text) 
        return x 
     
    def remove_punctuation(self, text): 
        table = str.maketrans("","", string.punctuation) 
        return text.translate(table) 
     
    def remove_stopwords(self, text): 
        text = [word.lower() for word in text.split() if word.lower() not in self.st
        return " ".join(text) 
     
    def to_sequences(self, tokens): 
        seq = self.tokenizer.texts_to_sequences(tokens) 
        seq = pad_sequences(seq, maxlen=self.maxlen, padding="post", truncating="pos
        return seq 

In [30]: train = pd.read_csv('./data/DBPEDIA_train.csv') 

In [31]: pipeline = Pipeline(steps=[('preprocess', Preprocessor(train))]) 

In [32]: filename = "pipeline_"+name+".joblib" 
dump(pipeline, filename=filename) 

Out[32]:



After adding the new model and pipeline to the web server, these can be loaded by clicking the
"Load Models" button under the Model tab and used for classification.

In [ ]:   


