
Multilayer Perceptron Networks
The main objective of this task is to train feed-forward
multilayer perceptron networks with one hidden layer to
approximate the following function:

𝑦 = 𝑠𝑖𝑛(2𝑥1 + 2.0) 𝑐𝑜𝑠(0.5𝑥2) + 0.5

𝑥1, 𝑥2 [0, 2]

The diagram 5 is the structure of the feed-forward neural
network to approximate the above function. There are two
inputs 𝑥1 and 𝑥2. These two input nodes are connected to
six neurons in the hidden layer. 𝑤𝑗𝑖 (𝑖 = 1,2, 𝑗 =

 1,2,3,4,5,6) are weights for the connections between input
nodes and hidden nodes. A bias is connected to all hidden
nodes with weights 𝑤𝑗

0. 𝑛𝑒𝑡𝑗 = ∑(𝑤𝑗𝑖 𝑥𝑖) is the inputs of

the hidden nodes. 𝑓() is a sigmoid function used as an
activation function in the hidden neurons and 𝑜𝑗 = 𝑓(𝑛𝑒𝑡𝑗)

is the outputs of the hidden nodes after applying the
activation function. Hidden nodes are connected to one
output node with weights 𝑣𝑗 and a bias is connected to the

output node with weight 𝑣0. 𝑦 = ∑(𝑣𝑗 𝑜𝑗) is the output of

the neural network.

Diagram 5: The structure of the Neural Network

21×2 values are generated for 𝑥1 and 𝑥2 in range
between 0 and 2π and corresponding y values are calculated
according to the function above.

Random 11 values are selected as the training dataset
and the rest as the test dataset. Training dataset is saved in a
file named train.dat and test dataset is saved in a file named
test.dat. Table 4 and 5 show the datasets saved in the files in
train.dat and test.dat, respectively, when the samples are
generated randomly with random seed set to 1004.

𝑖 𝑥1(𝑖) 𝑥2(𝑖) 𝑦(𝑖)

1 3.698412826643
04E-01

5.7132105105194
3E+00

1.2460110664521
6E-01

2 3.867300637550
06E+00

3.8145789323106
6E+00

6.0066837823389
8E-01

3 3.118623682958
28E+00

8.0143450791717
7E-01

1.3539772402202
6E+00

4 4.866230691239
31E+00

5.1935947300761
3E+00

1.1333550426500
3E+00

5 6.545949947267
04E-01

2.6756819552616
4E+00

4.6149035120680
5E-01

6 1.984766391685
32E+00

4.1619989140503
8E+00

6.5067446834877
5E-01

7 3.278672353910
40E+00

4.5705743247861
3E+00

2.7268949045228
2E-04

8 2.447403626267
99E-01

5.3815222037665
7E+00

-
4.6231335235918
1E-02

9 1.549851327482
91E+00

2.4858298554753
0E+00

2.0181629548001
4E-01

10 4.115001552340
35E+00

5.4751013304523
0E+00

1.1629324308539
7E+00

11 2.635860318263
09E+00

3.7975521885643
9E+00

2.3094916544458
5E-01

Table 4: Dataset saved in train.dat

𝑖 𝑥1(𝑖) 𝑥2(𝑖) 𝑦(𝑖)

1 4.690399766760
83E+00

5.4282190452990
0E+00

1.3433207661493
2E+00

2 3.518485789891
58E+00

5.0569006523235
7E-01

8.6613491083046
0E-01

3 1.455413787307
16E+00

1.5221897316396
5E+00

-
2.0987162904089
2E-01

4 2.755107876378
82E+00

4.4848831583022
4E+00

-
8.5866749408019
0E-02

5 1.920272090466
35E+00

1.3941920391868
7E+00

1.7159709660427
1E-01

6 1.436152205698
40E+00

5.2956399486273
5E+00

1.3693158948119
2E+00

7 4.243617373712
41E+00

2.1590513610401
8E+00

8.7903880673268
1E-02

8 4.999533346377
50E+00

6.1574905996064
2E+00

1.0362993784059
3E+00

9 3.570007206797
07E+00

1.2929546308511
5E+00

7.2424176397167
0E-01

10 3.546677796639
38E+00

3.7073735566738
7E+00

4.0917358561808
5E-01

Table 5: Dataset saved in test.dat

Diagram 6 and 7 show these datasets in three-
dimensional graphics

The algorithm is programmed using Python with
PyTorch, Numpy, Sympy and DEAP. The code is in the
Appendix A.

There are two inputs and one bias connecting to 6 hidden
nodes so the number of connections between the input layer
and the hidden layer is (2 + 1) × 6 = 18 . There are 6
hidden nodes and a bias connecting to 1 output node so the
number of connections between the hidden layer and the
output layer is (6 + 1) × 1 = 7. Therefore, the number of
weights of the neural network is 18 + 7 = 25 . Each
weight uses 15 bits so the total number of bits of each
individual is 25 × 15 = 375 bits.

N-point crossover and uniform crossover can be used as
a crossover operator and flip bit mutation can be used as a
mutation operator for binary coding.

According to DeJong (1975), one-point crossover with
probability of 0.6 and mutation probability of 1/𝑛 where 𝑛
is population size generate best performance when
population size is between 50 and 100.

I have tested different crossover operations. I run the
code 6 times for each operation with the same random seeds.
Crossover probability and mutation probability were set to
0.6 and 1/popSize (popSize = 100), respectively. The
averages of the loss with the test data using the best
individual after 100 generations are used as the results.

Table 5 shows the result of this test.

Crossover type Average loss

One-point crossover 0.386

Two-point crossover 0.881

Uniform crossover with
flipprob=0.3

1.084

Uniform crossover with
flipprob=0.6

0.504

Uniform crossover with
flipprob=0.9

0.832

Table 5: Average MSE after 100 generations using different
crossover operations

This test also shows that using one-point crossover
performs the best.

I also tested the performance of the genetic algorithm
with different number of generations. I run the code 6 times
for each number of generations with the same random seeds
and took averages of the loss. Diagram 8 is the plot of the
test results.

It shows that the result gets better until 100 and it gets
worse after 100 generations.

Owing to the above tests, I decided to use one-point
crossover with the probability of 0.6 and flip bit mutation
with the probability of 1/100 and set the number of
generations 100.

Diagram 9 and 10 show the change of loss of the
network using the best individual on training data and test
data, respectively.

Lines are added to the code for lifetime learning. The
code is in the Appendix B. After the crossover and mutation,
a lifetime learning is applied to each individual. The weights
of the network are set with the new individual. Gradient
calculation is disabled when the weights are set. As a
lifetime learning, Rprop algorithm is used to train the
network for 30 times. The weights of the network after the
lifetime learning is converted to Gray code using
“real2chrom” function and replaced with the individual
using “get_weight” function. The MSE of the network is set
to individual as a fitness value. The same lifetime learning
is applied to the whole population.

Diagram 11 and 12 show the change of loss of the
network using the best individuals on training data and test
data, respectively, using Lamarckian learning approach.

The line where individuals are replaced with new
individuals after lifetime learning is removed to change the
learning approach to Baldwinian approach.

The diagrams show the loss using pre-local and post-
local learning value of best individual on training set and
test set over the generations.

To generate the diagrams, some lines are added to the
code. The code is in the Appendix C. The individuals with
invalid fitness values are evaluated after the crossover and
mutation and the weights are set to the network using the
best individual to test the network before the lifetime
learning. The weights after the lifetime learning are assigned
to each individual as an attribute "newind" instead of
replacing the original individual. The best individual in the
population is selected and weights of the network is set with

the "newind" attribute of the individual to test the network
after the lifetime learning.

When comparing the results, Baldwinian learning
approach is slower than Lamarckian learning approach.
Baldwinian learning approach updates the fitness values of
individuals but does not update the individuals after the
lifetime learning, so the lifetime learning has influence only
on the selection of the individuals at the beginning of each
generation. On the other hand, Lamarckian learning
approach updates individuals after the lifetime learning so
the individuals that are selected at the beginning of each
generation are better than the previous generation.
Therefore, Lamarckian learning approach is faster than
Baldwinian leaning approach. Using Baldwinian learning
approach can be better than algorithms without lifetime

learning because it can select better individuals at the
beginning of each generation. However, according the
diagram 13, it seems like the evolution is slowed down after
20 generations. It can be because of the hidden effect where
the differences between the fitness values of individuals
become very small and the selection pressure decreases. It
cannot select better individuals according to the fitness
values calculated in the previous generation after the
lifetime learning, so the result does not improve very well.

References

DeJong KA (1975). Analysis of the behavior of a class of
genetic adaptive. Ph.D. thesis, Univ. of Michigan.

Appendix A

Python code

import random

from numpy import random as nprand

import math

import torch

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from sympy.combinatorics.graycode import GrayCode

from sympy.combinatorics.graycode import gray_to_bin

from deap import creator, base, tools, algorithms

random.seed(1004)

nprand.seed(1004)

generate 21 samples for x1 and x2 in range between 0 and 2π

x = nprand.rand(21,2)*2*math.pi

calculate corresponding y values

y = np.array([math.sin(2*x[i,0]+2.0)*math.cos(0.5*x[i,1])+0.5 for i in range(21)])

indices to choose random 11 values as the training dataset

index_train = np.random.choice(21, 11, replace=False)

indices to choose the rest of values as the testing dataset

index_test = np.setdiff1d(np.arange(21), index_train)

select 11 samples randomly as the training dataset and the rest as the testing dataset

train_x = x[index_train]

test_x = x[index_test]

train_y = y[index_train]

test_y = y[index_test]

organise the datasets

train_data = np.stack((train_x[:,0],train_x[:,1],train_y), axis=1)

test_data = np.stack((test_x[:,0],test_x[:,1],test_y), axis=1)

save datasets in data files

np.savetxt('train.dat',train_data)

np.savetxt('test.dat',test_data)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.text2D(0.05, 0.95, "Diagram 5: Training Data in 3D", transform=ax.transAxes)

ax.set_xlim3d(0, 2*math.pi)

ax.set_ylim3d(0,2*math.pi)

ax.scatter(x[:11,0],x[:11,1],y[:11])

plt.savefig('d5.png')

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.text2D(0.05, 0.95, "Diagram 6: Test Data in 3D", transform=ax.transAxes)

ax.set_xlim3d(0, 2*math.pi)

ax.set_ylim3d(0,2*math.pi)

ax.scatter(x[11:,0],x[11:,1],y[11:])

plt.savefig('d6.png')

plt.show()

train_x = torch.as_tensor(train_x, dtype=torch.float32)

train_y = torch.as_tensor(train_y, dtype=torch.float32).reshape(11,1)

test_x = torch.as_tensor(test_x, dtype=torch.float32)

test_y = torch.as_tensor(test_y, dtype=torch.float32).reshape(10,1)

Create single objective minimizing fitness class called "FitnessMin"

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))

Create an Individual class inherit from list with fitness attribute

creator.create("Individual", list, fitness=creator.FitnessMin)

n_feature=2

n_hidden=6

n_output=1

dimension = (n_feature+1)*n_hidden+(n_hidden+1)*n_output #Number of weights

numOfBits = 15 #Number of bits of each weight

maxnum = 2**numOfBits #absolute max size of number coded by binary list 1,0,0,1,1,....

popSize = 100 #Population size

iterations = 100 #Number of generations to be run

nElitists = 1 #number of elite individuals selected

crossProb = 0.6 # the probability for performing crossover

flipProb = 1. / (dimension * numOfBits) #Independent probability for each attribute to be exchanged

mutateprob = 1. / popSize # the probability for performing mutation

print("Total number of bits required for encoding the weights: ", numOfBits*dimension, " bits")

class Net(torch.nn.Module):

 # initialise one hidden layer and one output layer

 def __init__(self, n_feature, n_hidden, n_output):

 super(Net, self).__init__()

 self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer

 self.out = torch.nn.Linear(n_hidden, n_output) # output layer

 # connect up the layers: the input passes through the hidden, then the sigmoid, then the output layer

 def forward(self, x):

 x = torch.sigmoid(self.hidden(x)) # activation function for hidden layer

 x = self.out(x)

 return x

net = Net(n_feature=n_feature, n_hidden=n_hidden, n_output=n_output) # define the network

loss_func = torch.nn.MSELoss() #define loss function to calculate mean squared error

define function to calculate a loss

def calcFitness(individual):

 set_weight(individual)

 out = net(train_x) # input x and predict based on x

 loss = loss_func(out, train_y)

 return loss.item(),

define function to convert gray code to real number

def chrom2real(c):

 indasstring=''.join(map(str, c))

 degray=gray_to_bin(indasstring)

 numasint=int(degray, 2) # convert to int from base 2 list

 numinrange=-10+20*numasint/(maxnum-1)

 return numinrange

define function to separate an individual into weights in real number

def separatevariables(v):

 sep = []

 for i in range (0,numOfBits*dimension,numOfBits):

 sep.append(chrom2real(v[i:i+numOfBits]))

 return sep

define function to set weights to the neural network

def set_weight(ind):

 sep=separatevariables(ind)

 num = 0

 for i in range (n_hidden):

 for j in range (n_feature):

 net.hidden.weight[i][j] = sep[num]

 num += 1

 for i in range (n_output):

 for j in range (n_hidden):

 net.out.weight[i][j] = sep[num]

 num += 1

 for i in range (n_hidden):

 net.hidden.bias[i] = sep[num]

 num += 1

 for i in range (n_output):

 net.out.bias[i] = sep[num]

 num += 1

register functions to the toolbox

toolbox = base.Toolbox()

attr_bool function which returns 0 or 1 with equal probability

toolbox.register("attr_bool", random.randint, 0, 1)

individual function to generate an individual consisting of numOfBits*dimension attr_bool elements

toolbox.register("individual", tools.initRepeat, creator.Individual,

 toolbox.attr_bool, numOfBits*dimension)

population function to generate a list of individuals

toolbox.register("population", tools.initRepeat, list, toolbox.individual)

evaluate function which calls calcFitness

toolbox.register("evaluate", calcFitness)

mate function using two-point crossover

toolbox.register("mate", tools.cxOnePoint)

mutate function using flip bit mutation

toolbox.register("mutate", tools.mutFlipBit, indpb=flipProb)

select function using tournament selection

toolbox.register("select", tools.selTournament, fit_attr='fitness')

create an initial population of individuals

pop = toolbox.population(n=popSize)

Evaluate the initial population

fitnesses = list(map(toolbox.evaluate, pop))

for ind, fit in zip(pop, fitnesses):

 ind.fitness.values = fit

Variable keeping track of the number of generations

g = 0

Initialise arrays to store mean squared errors of the training data and test data over the generations

loss_values_train = []

loss_values_test = []

Begin the evolution

while g < iterations:

 # A new generation

 g = g + 1

 # Select the next generation individuals

 offspring = tools.selBest(pop, nElitists) + toolbox.select(pop,len(pop)-nElitists,2)

 # Clone the selected individuals

 offspring = list(map(toolbox.clone, offspring))

 for child1, child2 in zip(offspring[::2], offspring[1::2]):

 # cross two individuals with probability crossProb

 if random.random() < crossProb:

 toolbox.mate(child1, child2)

 # fitness values of the children must be recalculated later

 del child1.fitness.values

 del child2.fitness.values

 for mutant in offspring:

 # mutate an individual with probability mutateprob

 if random.random() < mutateprob:

 toolbox.mutate(mutant)

 # fitness values of the children must be recalculated later

 del mutant.fitness.values

 # Evaluate the individuals with an invalid fitness

 invalid_ind = [ind for ind in offspring if not ind.fitness.valid]

 fitnesses = map(toolbox.evaluate, invalid_ind)

 for ind, fit in zip(invalid_ind, fitnesses):

 ind.fitness.values = fit

 # The population is entirely replaced by the offspring

 pop[:] = offspring

 # Select the best individual in the population.

 best_ind = tools.selBest(pop, 1)[0]

 m = best_ind.fitness.values[0]

 loss_values_train.append(m)

 # Set weights using the best individual

 set_weight(best_ind)

 # Test the best individual with the test data

 out = net(test_x)

 loss = loss_func(out, test_y)

 loss_values_test.append(loss.item())

plt.title('Diagram 8: MSE of the Best Neural Network on Train Data')

plt.plot(np.array(loss_values_train), 'r')

plt.savefig('d8.png')

plt.show()

plt.title('Diagram 9: MSE of the Best Neural Network on Test Data')

plt.plot(np.array(loss_values_test), 'r')

plt.savefig('d9.png')

plt.show()

Appendix B

Modified Python code for lifetime learning

(Modified part is highlighted in yellow)

from sympy.combinatorics.graycode import gray_to_bin, bin_to_gray

…

def set_weight(ind):

 with torch.no_grad():

 sep=separatevariables(ind)

 num = 0

 for i in range (n_hidden):

 for j in range (n_feature):

 net.hidden.weight[i][j] = sep[num]

 num += 1

 for i in range (n_output):

 for j in range (n_hidden):

 net.out.weight[i][j] = sep[num]

 num += 1

 for i in range (n_hidden):

 net.hidden.bias[i] = sep[num]

 num += 1

 for i in range (n_output):

 net.out.bias[i] = sep[num]

 num += 1

define function to convert real number to gray code

def real2chrom(n):

 if n > 10:

 n = 10

 if n < -10:

 n = -10

 numasint = int((n+10)*(maxnum-1)/20)

 bin = format(numasint, 'b')

 gray = bin_to_gray(bin)

 gray = [int(i) for i in gray]

 for i in range(numOfBits-len(gray)):

 gray.insert(0,0)

 return gray

define function to get weights from the neural network

def get_weight():

 sep = []

 for i in range (n_hidden):

 for j in range (n_feature):

 sep.append(net.hidden.weight[i][j].item())

 for i in range (n_output):

 for j in range (n_hidden):

 sep.append(net.out.weight[i][j].item())

 for i in range (n_hidden):

 sep.append(net.hidden.bias[i].item())

 for i in range (n_output):

 sep.append(net.out.bias[i].item())

 ind = []

 for n in sep:

 ind += real2chrom(n)

 return ind

…

 # Lifetime

 for i, ind in enumerate(offspring):

 set_weight(ind)

 optimizer = torch.optim.Rprop(net.parameters(), lr=0.02)

 for t in range(30):

 out = net(train_x) # input x and predict based on x

 loss = loss_func(out, train_y)

 optimizer.zero_grad() # clear gradients for next train

 loss.backward() # backpropagation, compute gradients

 optimizer.step() # apply gradients

 out = net(train_x) # input x and predict based on x

 loss = loss_func(out, train_y)

 offspring[i] = creator.Individual(get_weight())

 offspring[i].fitness.values = (loss.item(),)

…

plt.title('Diagram 8: MSE of the Best Neural Network on Train Data')

plt.plot(np.array(loss_values_train), 'r')

plt.savefig('d8.png')

plt.show()

plt.title('Diagram 9: MSE of the Best Neural Network on Test Data')

plt.plot(np.array(loss_values_test), 'r')

plt.savefig('d9.png')

plt.show()

plt.title('Diagram 10: MSE of the Best Neural Network on Train Data\nusing Lamarckian learning approach')

plt.plot(np.array(loss_values_train), 'r')

plt.savefig('d10.png')

plt.show()

plt.title('Diagram 11: MSE of the Best Neural Network on Test Data\nusing Lamarckian learning approach')

plt.plot(np.array(loss_values_test), 'r')

plt.savefig('d11.png')

plt.show()

Appendix C

Modified Python code for Baldwinian learning approach

(Modified part is highlighted in yellow)

loss_values_train = []

loss_values_test = []

loss_values_train_before = []

loss_values_test_before = []

loss_values_train_after = []

loss_values_test_after = []

…

 # The population is entirely replaced by the offspring

 pop[:] = offspring

 # Select the best individual in the population.

 best_ind = tools.selBest(pop, 1)[0]

 m = best_ind.fitness.values[0]

 loss_values_train_before.append(m)

 # Set weights using the best individual

 set_weight(best_ind)

 # Test the best individual with the test data

 out = net(test_x)

 loss = loss_func(out, test_y)

 loss_values_test_before.append(loss.item())

 # Lifetime

 for i, ind in enumerate(offspring):

 set_weight(ind)

 optimizer = torch.optim.Rprop(net.parameters(), lr=0.02)

 for t in range(30):

 out = net(train_x) # input x and predict based on x

 loss = loss_func(out, train_y)

 optimizer.zero_grad() # clear gradients for next train

 loss.backward() # backpropagation, compute gradients

 optimizer.step() # apply gradients

 out = net(train_x) # input x and predict based on x

 loss = loss_func(out, train_y)

offspring[i] = creator.Individual(get_weight())

 offspring[i].fitness.values = (loss.item(),)

 offspring[i].fitness.newind = get_weight()

 # The population is entirely replaced by the offspring

 pop[:] = offspring

 # Select the best individual in the population.

 best_ind = tools.selBest(pop, 1)[0]

 m = best_ind.fitness.values[0]

 loss_values_train_after.append(m)

 # Set weights using the best individual

 set_weight(best_ind.fitness.newind)

 # Test the best individual with the test data

 out = net(test_x)

 loss = loss_func(out, test_y)

 loss_values_test_after.append(loss.item())

…

plt.title('Diagram 10: MSE of the Best Neural Network on Train Data\nusing Lamarckian learning approach')

plt.plot(np.array(loss_values_train), 'r')

plt.savefig('d10.png')

plt.show()

plt.title('Diagram 11: MSE of the Best Neural Network on Test Data\nusing Lamarckian learning approach')

plt.plot(np.array(loss_values_test), 'r')

plt.savefig('d11.png')

plt.show()

plt.title('Diagram 12: MSE of the Best Neural Network on Train Data before lifetime learning')

plt.plot(np.array(loss_values_train_before), 'r')

plt.savefig('d12.png')

plt.show()

plt.title('Diagram 13: MSE of the Best Neural Network on Test Data before lifetime learning')

plt.plot(np.array(loss_values_test_before), 'r')

plt.savefig('d13.png')

plt.show()

plt.title('Diagram 14: MSE of the Best Neural Network on Train Data using Baldwinian learning approach')

plt.plot(np.array(loss_values_train_after), 'r')

plt.savefig('d14.png')

plt.show()

plt.title('Diagram 15: MSE of the Best Neural Network on Test Data using Baldwinian learning approach')

plt.plot(np.array(loss_values_test_after), 'r')

plt.savefig('d15.png')

plt.show()

