
Multilayer Perceptron Networks
The main objective of this task is to train feed-forward 
multilayer perceptron networks with one hidden layer to 
approximate the following function: 

𝑦 =  𝑠𝑖𝑛(2𝑥1  +  2.0) 𝑐𝑜𝑠(0.5𝑥2)  +  0.5 

𝑥1, 𝑥2 [0, 2] 

The diagram 5 is the structure of the feed-forward neural 
network to approximate the above function. There are two 
inputs 𝑥1 and 𝑥2. These two input nodes are connected to 
six neurons in the hidden layer. 𝑤𝑗𝑖  (𝑖 =  1,2, 𝑗 =

 1,2,3,4,5,6) are weights for the connections between input 
nodes and hidden nodes. A bias is connected to all hidden 
nodes with weights 𝑤𝑗

0. 𝑛𝑒𝑡𝑗  =  ∑(𝑤𝑗𝑖  𝑥𝑖)  is the inputs of 

the hidden nodes. 𝑓()  is a sigmoid function used as an 
activation function in the hidden neurons and 𝑜𝑗  =  𝑓(𝑛𝑒𝑡𝑗) 

is the outputs of the hidden nodes after applying the 
activation function. Hidden nodes are connected to one 
output node with weights 𝑣𝑗 and a bias is connected to the 

output node with weight 𝑣0. 𝑦 = ∑(𝑣𝑗  𝑜𝑗) is the output of 

the neural network. 

Diagram 5: The structure of the Neural Network

21×2 values are generated for 𝑥1  and 𝑥2  in range 
between 0 and 2π and corresponding y values are calculated 
according to the function above. 

Random 11 values are selected as the training dataset 
and the rest as the test dataset. Training dataset is saved in a 
file named train.dat and test dataset is saved in a file named 
test.dat. Table 4 and 5 show the datasets saved in the files in 
train.dat and test.dat, respectively, when the samples are 
generated randomly with random seed set to 1004. 

𝑖 𝑥1(𝑖) 𝑥2(𝑖) 𝑦(𝑖) 

1 3.698412826643
04E-01 

5.7132105105194
3E+00 

1.2460110664521
6E-01 

2 3.867300637550
06E+00 

3.8145789323106
6E+00 

6.0066837823389
8E-01 

3 3.118623682958
28E+00 

8.0143450791717
7E-01 

1.3539772402202
6E+00 

4 4.866230691239
31E+00 

5.1935947300761
3E+00 

1.1333550426500
3E+00 

5 6.545949947267
04E-01 

2.6756819552616
4E+00 

4.6149035120680
5E-01 

6 1.984766391685
32E+00 

4.1619989140503
8E+00 

6.5067446834877
5E-01 

7 3.278672353910
40E+00 

4.5705743247861
3E+00 

2.7268949045228
2E-04 

8 2.447403626267
99E-01 

5.3815222037665
7E+00 

-
4.6231335235918
1E-02 

9 1.549851327482
91E+00 

2.4858298554753
0E+00 

2.0181629548001
4E-01 

10 4.115001552340
35E+00 

5.4751013304523
0E+00 

1.1629324308539
7E+00 

11 2.635860318263
09E+00 

3.7975521885643
9E+00 

2.3094916544458
5E-01 

Table 4: Dataset saved in train.dat 

𝑖 𝑥1(𝑖) 𝑥2(𝑖) 𝑦(𝑖) 

1 4.690399766760
83E+00 

5.4282190452990
0E+00 

1.3433207661493
2E+00 

2 3.518485789891
58E+00 

5.0569006523235
7E-01 

8.6613491083046
0E-01 

3 1.455413787307
16E+00 

1.5221897316396
5E+00 

-
2.0987162904089
2E-01 

4 2.755107876378
82E+00 

4.4848831583022
4E+00 

-
8.5866749408019
0E-02 

5 1.920272090466
35E+00 

1.3941920391868
7E+00 

1.7159709660427
1E-01 

6 1.436152205698
40E+00 

5.2956399486273
5E+00 

1.3693158948119
2E+00 



7 4.243617373712
41E+00 

2.1590513610401
8E+00 

8.7903880673268
1E-02 

8 4.999533346377
50E+00 

6.1574905996064
2E+00 

1.0362993784059
3E+00 

9 3.570007206797
07E+00 

1.2929546308511
5E+00 

7.2424176397167
0E-01 

10 3.546677796639
38E+00 

3.7073735566738
7E+00 

4.0917358561808
5E-01 

Table 5: Dataset saved in test.dat 

Diagram 6 and 7 show these datasets in three-
dimensional graphics 

 

The algorithm is programmed using Python with 
PyTorch, Numpy, Sympy and DEAP. The code is in the 
Appendix A. 

There are two inputs and one bias connecting to 6 hidden 
nodes so the number of connections between the input layer 
and the hidden layer is (2 + 1) × 6 =  18 . There are 6 
hidden nodes and a bias connecting to 1 output node so the 
number of connections between the hidden layer and the 
output layer is (6 + 1) × 1 =  7. Therefore, the number of 
weights of the neural network is 18 + 7 =  25 . Each 
weight uses 15 bits so the total number of bits of each 
individual is 25 ×  15 =  375 bits. 

N-point crossover and uniform crossover can be used as 
a crossover operator and flip bit mutation can be used as a 
mutation operator for binary coding. 

According to DeJong (1975), one-point crossover with 
probability of 0.6 and mutation probability of 1/𝑛 where 𝑛 
is population size generate best performance when 
population size is between 50 and 100.  

I have tested different crossover operations. I run the 
code 6 times for each operation with the same random seeds. 
Crossover probability and mutation probability were set to 
0.6 and 1/popSize (popSize = 100), respectively. The 
averages of the loss with the test data using the best 
individual after 100 generations are used as the results. 

Table 5 shows the result of this test. 

Crossover type Average loss 

One-point crossover 0.386 

Two-point crossover 0.881 

Uniform crossover with 
flipprob=0.3 

1.084 

Uniform crossover with 
flipprob=0.6 

0.504 

Uniform crossover with 
flipprob=0.9 

0.832 

Table 5: Average MSE after 100 generations using different 
crossover operations 

This test also shows that using one-point crossover 
performs the best. 

I also tested the performance of the genetic algorithm 
with different number of generations. I run the code 6 times 
for each number of generations with the same random seeds 
and took averages of the loss. Diagram 8 is the plot of the 
test results. 

 

It shows that the result gets better until 100 and it gets 
worse after 100 generations. 

Owing to the above tests, I decided to use one-point 
crossover with the probability of 0.6 and flip bit mutation 
with the probability of 1/100 and set the number of 
generations 100. 

Diagram 9 and 10 show the change of loss of the 
network using the best individual on training data and test 
data, respectively. 



 

Lines are added to the code for lifetime learning. The 
code is in the Appendix B. After the crossover and mutation, 
a lifetime learning is applied to each individual. The weights 
of the network are set with the new individual. Gradient 
calculation is disabled when the weights are set. As a 
lifetime learning, Rprop algorithm is used to train the 
network for 30 times. The weights of the network after the 
lifetime learning is converted to Gray code using 
“real2chrom” function and replaced with the individual 
using “get_weight” function. The MSE of the network is set 
to individual as a fitness value. The same lifetime learning 
is applied to the whole population. 

Diagram 11 and 12 show the change of loss of the 
network using the best individuals on training data and test 
data, respectively, using Lamarckian learning approach. 

 

The line where individuals are replaced with new 
individuals after lifetime learning is removed to change the 
learning approach to Baldwinian approach. 

The diagrams show the loss using pre-local and post-
local learning value of best individual on training set and 
test set over the generations. 

 

To generate the diagrams, some lines are added to the 
code. The code is in the Appendix C. The individuals with 
invalid fitness values are evaluated after the crossover and 
mutation and the weights are set to the network using the 
best individual to test the network before the lifetime 
learning. The weights after the lifetime learning are assigned 
to each individual as an attribute "newind" instead of 
replacing the original individual. The best individual in the 
population is selected and weights of the network is set with 



the "newind" attribute of the individual to test the network 
after the lifetime learning. 

When comparing the results, Baldwinian learning 
approach is slower than Lamarckian learning approach. 
Baldwinian learning approach updates the fitness values of 
individuals but does not update the individuals after the 
lifetime learning, so the lifetime learning has influence only 
on the selection of the individuals at the beginning of each 
generation. On the other hand, Lamarckian learning 
approach updates individuals after the lifetime learning so 
the individuals that are selected at the beginning of each 
generation are better than the previous generation. 
Therefore, Lamarckian learning approach is faster than 
Baldwinian leaning approach. Using Baldwinian learning 
approach can be better than algorithms without lifetime 

learning because it can select better individuals at the 
beginning of each generation. However, according the 
diagram 13, it seems like the evolution is slowed down after 
20 generations. It can be because of the hidden effect where 
the differences between the fitness values of individuals 
become very small and the selection pressure decreases. It 
cannot select better individuals according to the fitness 
values calculated in the previous generation after the 
lifetime learning, so the result does not improve very well. 
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Appendix A 

Python code 

import random 

from numpy import random as nprand 

import math 

import torch 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from sympy.combinatorics.graycode import GrayCode 

from sympy.combinatorics.graycode import gray_to_bin 

 

from deap import creator, base, tools, algorithms 

 

random.seed(1004) 

nprand.seed(1004) 

 

# generate 21 samples for x1 and x2 in range between 0 and 2π 

x = nprand.rand(21,2)*2*math.pi 

# calculate corresponding y values 

y = np.array([math.sin(2*x[i,0]+2.0)*math.cos(0.5*x[i,1])+0.5 for i in range(21)]) 

# indices to choose random 11 values as the training dataset 

index_train = np.random.choice(21, 11, replace=False)  

# indices to choose the rest of values as the testing dataset 

index_test = np.setdiff1d(np.arange(21), index_train) 

 

# select 11 samples randomly as the training dataset and the rest as the testing dataset 

train_x = x[index_train] 

test_x = x[index_test] 

train_y = y[index_train] 

test_y = y[index_test] 

 

# organise the datasets 

train_data = np.stack((train_x[:,0],train_x[:,1],train_y), axis=1) 

test_data = np.stack((test_x[:,0],test_x[:,1],test_y), axis=1) 

 

# save datasets in data files 

np.savetxt('train.dat',train_data) 

np.savetxt('test.dat',test_data) 

 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.text2D(0.05, 0.95, "Diagram 5: Training Data in 3D", transform=ax.transAxes) 

ax.set_xlim3d(0, 2*math.pi) 

ax.set_ylim3d(0,2*math.pi) 

ax.scatter(x[:11,0],x[:11,1],y[:11]) 

plt.savefig('d5.png') 

 

fig = plt.figure() 

ax = fig.add_subplot(111, projection='3d') 

ax.text2D(0.05, 0.95, "Diagram 6: Test Data in 3D", transform=ax.transAxes) 

ax.set_xlim3d(0, 2*math.pi) 

ax.set_ylim3d(0,2*math.pi) 

ax.scatter(x[11:,0],x[11:,1],y[11:]) 

plt.savefig('d6.png') 

plt.show() 

 

train_x = torch.as_tensor(train_x, dtype=torch.float32) 

train_y = torch.as_tensor(train_y, dtype=torch.float32).reshape(11,1) 

test_x = torch.as_tensor(test_x, dtype=torch.float32) 

test_y = torch.as_tensor(test_y, dtype=torch.float32).reshape(10,1) 

 



# Create single objective minimizing fitness class called "FitnessMin" 

creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) 

# Create an Individual class inherit from list with fitness attribute 

creator.create("Individual", list, fitness=creator.FitnessMin) 

 

n_feature=2 

n_hidden=6 

n_output=1 

dimension   = (n_feature+1)*n_hidden+(n_hidden+1)*n_output #Number of weights  

numOfBits   = 15 #Number of bits of each weight 

maxnum      = 2**numOfBits #absolute max size of number coded by binary list 1,0,0,1,1,.... 

popSize     = 100 #Population size 

iterations  = 100 #Number of generations to be run 

nElitists   = 1 #number of elite individuals selected 

crossProb   = 0.6 # the probability for performing crossover 

flipProb    = 1. / (dimension * numOfBits) #Independent probability for each attribute to be exchanged 

mutateprob  = 1. / popSize # the probability for performing mutation 

 

print("Total number of bits required for encoding the weights: ", numOfBits*dimension, " bits") 

 

class Net(torch.nn.Module): 

    # initialise one hidden layer and one output layer 

    def __init__(self, n_feature, n_hidden, n_output): 

        super(Net, self).__init__() 

        self.hidden = torch.nn.Linear(n_feature, n_hidden)  # hidden layer 

        self.out = torch.nn.Linear(n_hidden, n_output)  # output layer 

 

    # connect up the layers: the input passes through the hidden, then the sigmoid, then the output layer 

    def forward(self, x): 

        x = torch.sigmoid(self.hidden(x))  # activation function for hidden layer 

        x = self.out(x) 

        return x 

 

net = Net(n_feature=n_feature, n_hidden=n_hidden, n_output=n_output)  # define the network 

loss_func = torch.nn.MSELoss() #define loss function to calculate mean squared error 

 

# define function to calculate a loss 

def calcFitness(individual): 

    set_weight(individual) 

    out = net(train_x)  # input x and predict based on x 

    loss = loss_func(out, train_y) 

    return loss.item(), 

 

# define function to convert gray code to real number 

def chrom2real(c): 

    indasstring=''.join(map(str, c)) 

    degray=gray_to_bin(indasstring) 

    numasint=int(degray, 2) # convert to int from base 2 list 

    numinrange=-10+20*numasint/(maxnum-1) 

    return numinrange 

 

# define function to separate an individual into weights in real number 

def separatevariables(v): 

    sep = [] 

    for i in range (0,numOfBits*dimension,numOfBits): 

        sep.append(chrom2real(v[i:i+numOfBits])) 

    return sep 

 

# define function to set weights to the neural network 

def set_weight(ind): 

    sep=separatevariables(ind) 

    num = 0 



    for i in range (n_hidden): 

        for j in range (n_feature): 

            net.hidden.weight[i][j] = sep[num] 

            num += 1 

    for i in range (n_output): 

        for j in range (n_hidden): 

            net.out.weight[i][j] = sep[num] 

            num += 1 

    for i in range (n_hidden): 

        net.hidden.bias[i] = sep[num] 

        num += 1 

    for i in range (n_output): 

        net.out.bias[i] = sep[num] 

        num += 1 

 

# register functions to the toolbox 

toolbox = base.Toolbox() 

# attr_bool function which returns 0 or 1 with equal probability 

toolbox.register("attr_bool", random.randint, 0, 1) 

# individual function to generate an individual consisting of numOfBits*dimension attr_bool elements 

toolbox.register("individual", tools.initRepeat, creator.Individual,  

    toolbox.attr_bool, numOfBits*dimension) 

# population function to generate a list of individuals 

toolbox.register("population", tools.initRepeat, list, toolbox.individual) 

# evaluate function which calls calcFitness 

toolbox.register("evaluate", calcFitness) 

# mate function using two-point crossover   

toolbox.register("mate", tools.cxOnePoint) 

# mutate function using flip bit mutation 

toolbox.register("mutate", tools.mutFlipBit, indpb=flipProb) 

# select function using tournament selection 

toolbox.register("select", tools.selTournament, fit_attr='fitness') 

 

# create an initial population of individuals 

pop = toolbox.population(n=popSize) 

 

# Evaluate the initial population 

fitnesses = list(map(toolbox.evaluate, pop)) 

for ind, fit in zip(pop, fitnesses): 

    ind.fitness.values = fit 

 

# Variable keeping track of the number of generations 

g = 0 

# Initialise arrays to store mean squared errors of the training data and test data over the generations 

loss_values_train = [] 

loss_values_test = [] 

 

# Begin the evolution 

while g < iterations: 

    # A new generation 

    g = g + 1 

     

    # Select the next generation individuals 

    offspring = tools.selBest(pop, nElitists) + toolbox.select(pop,len(pop)-nElitists,2) 

    # Clone the selected individuals 

    offspring = list(map(toolbox.clone, offspring)) 

 

    for child1, child2 in zip(offspring[::2], offspring[1::2]): 

 

        # cross two individuals with probability crossProb 

        if random.random() < crossProb: 

            toolbox.mate(child1, child2) 



 

            # fitness values of the children must be recalculated later 

            del child1.fitness.values 

            del child2.fitness.values 

 

    for mutant in offspring: 

 

        # mutate an individual with probability mutateprob 

        if random.random() < mutateprob: 

            toolbox.mutate(mutant) 

            # fitness values of the children must be recalculated later 

            del mutant.fitness.values 

     

    # Evaluate the individuals with an invalid fitness 

    invalid_ind = [ind for ind in offspring if not ind.fitness.valid] 

    fitnesses = map(toolbox.evaluate, invalid_ind) 

    for ind, fit in zip(invalid_ind, fitnesses): 

        ind.fitness.values = fit 

     

    # The population is entirely replaced by the offspring 

    pop[:] = offspring 

 

    # Select the best individual in the population. 

    best_ind = tools.selBest(pop, 1)[0] 

    m = best_ind.fitness.values[0] 

    loss_values_train.append(m) 

     

    # Set weights using the best individual 

    set_weight(best_ind) 

     

    # Test the best individual with the test data 

    out = net(test_x) 

    loss = loss_func(out, test_y) 

    loss_values_test.append(loss.item()) 

 

plt.title('Diagram 8: MSE of the Best Neural Network on Train Data') 

plt.plot(np.array(loss_values_train), 'r') 

plt.savefig('d8.png') 

plt.show() 

 

plt.title('Diagram 9: MSE of the Best Neural Network on Test Data') 

plt.plot(np.array(loss_values_test), 'r') 

plt.savefig('d9.png') 

plt.show()  



Appendix B 

Modified Python code for lifetime learning 

(Modified part is highlighted in yellow) 

 

from sympy.combinatorics.graycode import gray_to_bin, bin_to_gray 

 

… 

 

def set_weight(ind): 

    with torch.no_grad(): 

        sep=separatevariables(ind) 

        num = 0 

        for i in range (n_hidden): 

            for j in range (n_feature): 

                net.hidden.weight[i][j] = sep[num] 

                num += 1 

        for i in range (n_output): 

            for j in range (n_hidden): 

                net.out.weight[i][j] = sep[num] 

                num += 1 

        for i in range (n_hidden): 

            net.hidden.bias[i] = sep[num] 

            num += 1 

        for i in range (n_output): 

            net.out.bias[i] = sep[num] 

            num += 1 

 

# define function to convert real number to gray code 

def real2chrom(n): 

    if n > 10: 

        n = 10 

    if n < -10: 

        n = -10 

    numasint = int((n+10)*(maxnum-1)/20) 

    bin = format(numasint, 'b') 

    gray = bin_to_gray(bin) 

    gray = [int(i) for i in gray] 

    for i in range(numOfBits-len(gray)): 

        gray.insert(0,0) 

    return gray 

 

# define function to get weights from the neural network 

def get_weight(): 

    sep = [] 

    for i in range (n_hidden): 

        for j in range (n_feature): 

            sep.append(net.hidden.weight[i][j].item()) 

    for i in range (n_output): 

        for j in range (n_hidden): 

            sep.append(net.out.weight[i][j].item()) 

    for i in range (n_hidden): 

        sep.append(net.hidden.bias[i].item()) 

    for i in range (n_output): 

        sep.append(net.out.bias[i].item()) 

         

    ind = [] 

    for n in sep: 

        ind += real2chrom(n) 

    return ind 

 

… 

 



    # Lifetime 

    for i, ind in enumerate(offspring): 

        set_weight(ind) 

        optimizer = torch.optim.Rprop(net.parameters(), lr=0.02) 

        for t in range(30): 

            out = net(train_x)  # input x and predict based on x 

            loss = loss_func(out, train_y) 

            optimizer.zero_grad()  # clear gradients for next train 

            loss.backward()  # backpropagation, compute gradients 

            optimizer.step()  # apply gradients 

        out = net(train_x)  # input x and predict based on x 

        loss = loss_func(out, train_y) 

        offspring[i] = creator.Individual(get_weight()) 

        offspring[i].fitness.values = (loss.item(),) 

 

… 

 

# plt.title('Diagram 8: MSE of the Best Neural Network on Train Data') 

# plt.plot(np.array(loss_values_train), 'r') 

# plt.savefig('d8.png') 

# plt.show() 

 

# plt.title('Diagram 9: MSE of the Best Neural Network on Test Data') 

# plt.plot(np.array(loss_values_test), 'r') 

# plt.savefig('d9.png') 

# plt.show() 

 

plt.title('Diagram 10: MSE of the Best Neural Network on Train Data\nusing Lamarckian learning approach') 

plt.plot(np.array(loss_values_train), 'r') 

plt.savefig('d10.png') 

plt.show() 

 

plt.title('Diagram 11: MSE of the Best Neural Network on Test Data\nusing Lamarckian learning approach') 

plt.plot(np.array(loss_values_test), 'r') 

plt.savefig('d11.png') 

plt.show()  



Appendix C 

Modified Python code for Baldwinian learning approach 

(Modified part is highlighted in yellow) 

 

# loss_values_train = [] 

# loss_values_test = [] 

loss_values_train_before = [] 

loss_values_test_before = [] 

loss_values_train_after = [] 

loss_values_test_after = [] 

 

… 

 

    # The population is entirely replaced by the offspring 

    pop[:] = offspring 

 

    # Select the best individual in the population. 

    best_ind = tools.selBest(pop, 1)[0] 

    m = best_ind.fitness.values[0] 

    loss_values_train_before.append(m) 

     

    # Set weights using the best individual 

    set_weight(best_ind) 

     

    # Test the best individual with the test data 

    out = net(test_x) 

    loss = loss_func(out, test_y) 

    loss_values_test_before.append(loss.item()) 

     

    # Lifetime 

    for i, ind in enumerate(offspring): 

        set_weight(ind) 

        optimizer = torch.optim.Rprop(net.parameters(), lr=0.02) 

        for t in range(30): 

            out = net(train_x)  # input x and predict based on x 

            loss = loss_func(out, train_y) 

            optimizer.zero_grad()  # clear gradients for next train 

            loss.backward()  # backpropagation, compute gradients 

            optimizer.step()  # apply gradients 

        out = net(train_x)  # input x and predict based on x 

        loss = loss_func(out, train_y) 

#         offspring[i] = creator.Individual(get_weight()) 

        offspring[i].fitness.values = (loss.item(),) 

        offspring[i].fitness.newind = get_weight() 

     

    # The population is entirely replaced by the offspring 

    pop[:] = offspring 

 

    # Select the best individual in the population. 

    best_ind = tools.selBest(pop, 1)[0] 

    m = best_ind.fitness.values[0] 

    loss_values_train_after.append(m) 

     

    # Set weights using the best individual 

    set_weight(best_ind.fitness.newind) 

     

    # Test the best individual with the test data 

    out = net(test_x) 

    loss = loss_func(out, test_y) 

    loss_values_test_after.append(loss.item()) 

 

… 



 

# plt.title('Diagram 10: MSE of the Best Neural Network on Train Data\nusing Lamarckian learning approach') 

# plt.plot(np.array(loss_values_train), 'r') 

# plt.savefig('d10.png') 

# plt.show() 

 

# plt.title('Diagram 11: MSE of the Best Neural Network on Test Data\nusing Lamarckian learning approach') 

# plt.plot(np.array(loss_values_test), 'r') 

# plt.savefig('d11.png') 

# plt.show() 

 

plt.title('Diagram 12: MSE of the Best Neural Network on Train Data before lifetime learning') 

plt.plot(np.array(loss_values_train_before), 'r') 

plt.savefig('d12.png') 

plt.show() 

 

plt.title('Diagram 13: MSE of the Best Neural Network on Test Data before lifetime learning') 

plt.plot(np.array(loss_values_test_before), 'r') 

plt.savefig('d13.png') 

plt.show() 

 

plt.title('Diagram 14: MSE of the Best Neural Network on Train Data using Baldwinian learning approach') 

plt.plot(np.array(loss_values_train_after), 'r') 

plt.savefig('d14.png') 

plt.show() 

 

plt.title('Diagram 15: MSE of the Best Neural Network on Test Data using Baldwinian learning approach') 

plt.plot(np.array(loss_values_test_after), 'r') 

plt.savefig('d15.png') 

plt.show() 


