
Simulation

Deformation Simulation
Rina Fumoto

Introduction
Deformation is one of the most important aspects of the physically-based simulation. This report will

review relevant literature and describe the method used for this project and implementation details. It

also includes analysis and reflection on the method and implementation at the end.

Literature Review

Solid Mechanics
Physically-based deformation has a long history in Computer Graphics (Nealen et al. 2006). The
essential properties for simulating deformation are stress and strain. Stress is defined as the force
intensity and strain is given by a normalised displacement (Bergstrom 2015). The relation between
these properties is called a constitutive model and this distinguishes the response of different
materials. For example, Hooke's law states linear elasticity (Müller 2008) and St. Venant-Kirchhoff
and Neo-Hookean model are constitutive models for hyperelastic materials (Sifakis and Barbic 2012;
Wolper et al. 2019). There are a few models for controlling plasticity, such as Johnson-Cook
(Bergstrom 2015), Cam-Clay, von Mises and Drucker-Prager models (Wolper et al. 2019). These
models can be used to simulate the deformation of different types of materials.

Model Discretization
To simulate deformation, models must be discretised. There are different methods for model

discretisation and these can be categorised into Lagrangian and Eulerian methods (Nealen et al. 2006).

Lagrangian methods include mesh-based methods, such as the Finite Element Method, Boundary

Element Method and Mass-Spring, and mesh-free methods, such as the Smoothed Particle

Hydrodynamics. Eulerian methods are usually used for fluids.

Material Point Method
Another method is the Material Point Method (MPM), which combines the Lagrangian and Eulerian

methods. It was introduced by Sulsky et al. (1995) as an extension of the Fluid Implicit Particle (Brackbill

and Ruppel 1986) for simulating solid mechanics. The first use of MPM in graphics was in 2013 by

Stomakhin et al. where they simulated snow. Since then, it has been used to simulate various behaviours

of materials, such as diffusion (Han et al. 2021), fracture (Hu et al. 2018; Wang et al. 2019; Wolper et al.

2019; Wolper et al. 2020; Fei et al. 2021; Han et al. 2021), friction (Guo et al. 2018; Han et al. 2019; Fei et

al. 2021) and phase transition (Stomakhin et al. 2014; Ding et al. 2019).

Method
The following method uses the traditional MPM based on Disney’s paper (Stomakhin et al. 2013) to

simulate the deformation of elastoplastic materials in two-dimension.

Particles to Grid
The first step is to transfer the mass and velocity from particles to the grid. Interpolation is done by using

dyadic products of one-dimensional cubic B-splines:

 𝑁𝒊
ℎ(𝒙𝑝) = 𝑁 (

1

ℎ
(𝑥𝑝 − 𝑖ℎ))𝑁(

1

ℎ
(𝑦𝑝 − 𝑗ℎ)) (1)

where 𝒊 = (𝑖, 𝑗, 𝑘) is the grid index, 𝒙𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is the evaluation position, ℎ is the grid spacing and

 𝑁(𝑥) =

{

1

2
|𝑥|3 − 𝑥2 +

2

3
, 0 ≤ |𝑥| < 1

−
1

6
|𝑥|3 + 𝑥2 − 2|𝑥| +

4

3
, 1 ≤ |𝑥| < 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

𝑁𝒊
ℎ(𝒙𝑝) will be represented as 𝑤𝒊𝑝 for later equations in this report.

Using the above equations, the particle masses are rasterized as follows:

 𝑚𝒊
𝑛 =∑ 𝑚𝑝𝑤𝒊𝑝

𝑛

𝑝
 (3)

Different from FLIP, MPM uses normalized weights for velocity as the weighting does not result in

momentum conservation:

 𝒗𝒊
𝑛 =

∑ 𝒗𝑝
𝑛𝑚𝑝𝑤𝒊𝑝

𝑛
𝑝

𝑚𝒊
𝑛 (4)

Compute Particle Volumes and Densities
The particle volumes and densities are computed only once during the first timestep.

First, estimate a cell’s density as
𝑚𝒊
0

ℎ2
, then weight it back to the particles as

 𝜌𝑝
0 =∑

𝑚𝒊
0𝑤𝒊𝑝

0

ℎ2𝒊
 (5)

Then, estimate particle volumes as

 𝑉𝑝
0 =

𝑚𝑝

𝜌𝑝
0 (6)

Update Grid
The stress-based forces on the grid are computed as follows:

 𝒇𝒊 = −∑ 𝑉𝑝
0
𝜕Ψ

𝜕𝑭𝐸
(𝑭𝐸𝑝

𝑛 , 𝑭𝑃𝑝
𝑛)(𝑭𝐸𝑝

𝑛)𝑇∇𝑤𝒊𝑝
𝑛

𝑝
 (7)

where 𝑭𝐸𝑝
𝑛 and 𝑭𝑃𝑝

𝑛 are the elastic and plastic part of the gradient density and

𝜕Ψ

𝜕𝑭𝐸
(𝑭𝐸𝑝

𝑛 , 𝑭𝑃𝑝
𝑛) = 2𝜇0𝑒

𝜉(1−𝐽𝑃𝑝
𝑛)(𝑭𝐸𝑝

𝑛 − 𝑹𝐸𝑝
𝑛) + 𝜆0𝑒

𝜉(1−𝐽𝑃𝑝
𝑛)(𝐽𝐸𝑝

𝑛 − 1)𝐽𝐸𝑝
𝑛 (𝑭𝐸𝑝

𝑛) −𝑇 (8)

is the derivative of the elastoplastic potential energy density where 𝜇0 and 𝜆0 are the initial Lame

coefficients, 𝜉 is a dimensionless plastic hardening parameter, J is a determinant of 𝑭 and 𝑹 is the

rotation matrix of the polar decomposition of 𝑭 = 𝑹𝑺, which can be expressed as 𝑹 = 𝑼𝑽𝑇 using the

singular value decomposition 𝑭 = 𝑼𝚺𝑽𝑇.

The gradient of the interpolation function ∇𝑤𝒊𝑝 can be computed as:

∇𝑤𝒊𝑝 = ∇𝑁𝒊
ℎ(𝒙𝑝) =

[

 𝑁′ (

1

ℎ
(𝑥𝑝 − 𝑖ℎ))𝑁 (

1

ℎ
(𝑦𝑝 − 𝑗ℎ))

𝑁 (
1

ℎ
(𝑥𝑝 − 𝑖ℎ))𝑁

′ (
1

ℎ
(𝑦𝑝 − 𝑗ℎ))

]

𝑁′(𝑥) =

{

3

2
𝑥2
|𝑥|

𝑥
− 2𝑥, 0 ≤ |𝑥| < 1

−
1

2
𝑥2
|𝑥|

𝑥
+ 2𝑥 − 2

|𝑥|

𝑥
, 1 ≤ |𝑥| < 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(9)

After computing the stress-based forces, external forces are added.

Using the computed forces, update the grid velocities as follows:

 𝒗𝒊
∗ = 𝒗𝒊

𝑛 + ∆𝑡𝑚𝒊
−1𝒇𝒊

𝑛 (10)

When a collision is detected, compute the local normal 𝒏. If 𝑣𝑛 = 𝒗𝒊
∗ ∙ 𝒏 ≥ 0, the bodies are separating

so no collision is applied, otherwise, update the velocity as follow:

 𝒗𝑖
𝑛+1 = 𝒗𝒊

∗ − 𝒏𝑣𝑛 (11)

Update Deformation Gradients
First, update the elastic part of the deformation gradient temporarily by the following equations:

𝛁𝒗𝑝

𝑛+1 =∑ 𝒗𝒊
𝑛+1(∇𝑤𝒊𝑝

𝑛)
𝑇

𝒊

𝑭𝐸𝑝
∗ = (𝑰 + ∆𝑡∇𝒗𝑝

𝑛+1)𝑭𝐸𝑝
𝑛

(12)

Then, compute the singular value decomposition of 𝑭𝐸𝑝
∗ :

 𝑭𝐸𝑝
∗ = 𝑼𝑝𝚺𝑝

∗𝑽𝑝
𝑇 (13)

To push the part of 𝑭𝐸𝑝
∗ that exceeds the critical deformation threshold, clamp the singular values to the

permitted range as follow:

 𝚺𝑝
𝑛+1 = 𝑐𝑙𝑎𝑚𝑝(𝚺𝑝

∗ , [1 − 𝜃𝑐, 1 + 𝜃𝑠]) (14)

where 𝜃𝑐 and 𝜃𝑠 are critical compression and stretch.

Finally, update the elastic and plastic part of the deformation gradient as:

𝑭𝐸𝑝
𝑛+1 = 𝑼𝑝𝚺𝑝

𝑛+1𝑽𝑝
𝑇

𝑭𝑃𝑝
𝑛+1 = 𝑽𝑝𝚺𝑝

𝑛+1−1𝑼𝑝
𝑇𝑭𝐸𝑝

∗ 𝑭𝑃𝑝
𝑛

(15)

Grid to Particles
First, update the particle velocities using the combination of PIC and FLIP as follows:

𝒗𝑝
∗ = (1 − 𝛼)∑ 𝒗𝑖

𝑛+1𝑤𝒊𝑝
𝑛

𝑖
+ 𝛼 (𝒗𝑝

𝑛 +∑ (𝒗𝑖
𝑛+1 − 𝒗𝑖

𝑛)𝑤𝒊𝑝
𝑛

𝑖
)

=∑ 𝒗𝑖
𝑛+1𝑤𝒊𝑝

𝑛

𝑖
+ 𝛼 (𝒗𝑝

𝑛 −∑ 𝒗𝑖
𝑛𝑤𝒊𝑝

𝑛

𝑖
)

(16)

where 𝛼 is the PIC-FLIP blending ratio.

After updating the particle velocities, handle collision same as the grid velocities using the equation 11 on

𝒗𝑝
∗ instead of 𝒗𝒊

∗.

Finally, update the particle positions as:

 𝒙𝑝
𝑛+1 = 𝒙𝑝

𝑛 + ∆𝑡𝒗𝑝
𝑛+1 (17)

Implementation
I was going to implement the simulation in Houdini at the beginning. However, there are many

components to understand to be able to implement it in Houdini, which may take too long to complete

the implementation in time. Therefore, I decided to implement in C++ with NGL, which I am more familiar

with, to focus on the MPM method and completion of the simulation instead of learning new technical

skills.

Class Diagram

Figure 1: Class Diagram

This class diagram only includes the MPM class, which has all the variables and functions used for the

simulation. Other classes in the program are used for GUI and visualisation of the simulation.

Eigen library is used for singular value decomposition. The private “eigenVec3” function is used to

convert the NGL vectors to Eigen vectors as the results of the decomposition are Eigen matrices, which

cannot be calculated with NGL vectors. The private “Interpolate” and “bSpline” functions are used to

calculate the interpolation in equations 1 and 2 and “dInterpolate” and “dBSpline” functions are used to

calculate the gradient of the interpolation in equations 9. Other private functions are used to operate the

steps described in the method section. The public functions are called from NGLScene class to respond to

button actions from GUI. Collision handling is simplified as no solid object is added to the simulation

except for the solid cells around the simulation frame. It is handled by setting the velocities on the solid

surfaces to zero.

GUI

Figure 2: GUI. Visualisation and simulation settings on the left and saving and playing the simulation on

the right.

The simulated particles are visualised using NGL and GUI was implemented using Qt as shown in the

figure above to ease the testing process. There are four shapes to initialise the particles. I used Houdini to

generate circle shapes and exported to CSV to be loaded to the simulation. The simulation settings can be

edited via GUI to test the implementation with different parameters and the simulation can be played

and paused by a button click. The step button allows simulating only one timestep. The particle velocities

and grid velocities can be visualised with red lines with the checkboxes as shown on the left image in the

figure 2. This helped to find out errors in the implementation.

While testing the simulation, I found out it does not work properly with a large timestep but testing with

a small timestep makes the testing time longer. Therefore, I made a save function to save the particle

positions as a geo file at each frame. The saved simulation can be played with the application or imported

into Houdini. Sample simulations with different settings are included in the source code and these can be

played by loading it on the save tab. A sample Houdini scene for comparing those simulations can be

found in test.hipnc.

Analysis & Reflection
The implemented system successfully simulates the deformation of objects with different shapes and

materials in various situations. Simulating with large timesteps and small grid sizes resulted in particles to

be exploded. However, simulating with small timesteps takes a long time. I found that finding a suitable

timestep is very important for the MPM simulation. Changing the parameters for the material produced

different simulations as shown in figure 3.

Figure 3: Simulation with different parameter settings.

Simulation changed dramatically with low critical stretch but other parameter changes produced similar

results. Even though the results look similar, there are slight differences in each simulation when looking

at these closely. The difference should be more obvious with larger simulations but it could not be tested

due to the time constraint.

Although the system can simulate deformation, there are many improvements that can be made. For

example, the simulation can be integrated into 3D simulation and made into a Houdini plugin to allow

more user controls. This project used the traditional method introduced in 2013 but there are many

improved approaches introduced in recent papers like Moving Least Squares MPM (Hu et al. 2018). Also,

different constitutive models can be applied. This system is suitable for testing a simulation with a small

number of particles as the simulation takes a very long time. The performance can be improved with GPU

optimization (Gao et al. 2018; Wang et al. 2020). In addition, it can be improved to simulate interactions

between multiple materials and other behaviours like diffusion and fracture.

Conclusion
This report covered the related background and previous works, the detailed implementation method

and analysis and reflections of the implementation. Overall, the project can be considered successful due

to the fact that the initial objective to implement deformation simulation using MPM has been achieved.

References
Bergstrom, J.S., 2015. Mechanics of solid polymers: theory and computational modeling. William Andrew.

Brackbill, J.U. and Ruppel, H.M., 1986. FLIP: A method for adaptively zoned, particle-in-cell calculations of

fluid flows in two dimensions. Journal of Computational physics, 65(2), pp.314-343.

Ding, M., Han, X., Wang, S., Gast, T.F. and Teran, J.M., 2019. A thermomechanical material point method

for baking and cooking. ACM Transactions on Graphics (TOG), 38(6), pp.1-14.

Fei, Y., Guo, Q., Wu, R., Huang, L. and Gao, M., 2021. Revisiting integration in the material point method:

a scheme for easier separation and less dissipation. ACM Transactions on Graphics (TOG), 40(4), pp.1-16.

Gao, M., Wang, X., Wu, K., Pradhana, A., Sifakis, E., Yuksel, C. and Jiang, C., 2018. GPU optimization of

material point methods. ACM Transactions on Graphics (TOG), 37(6), pp.1-12.

Guo, Q., Han, X., Fu, C., Gast, T., Tamstorf, R. and Teran, J., 2018. A material point method for thin shells

with frictional contact. ACM Transactions on Graphics (TOG), 37(4), pp.1-15.

Han, C., Xue, T. and Aanjaneya, M., 2021, October. A Lagrangian Particle‐based Formulation for Coupled

Simulation of Fracture and Diffusion in Thin Membranes. In Computer Graphics Forum (Vol. 40, No. 7, pp.

97-108).

Han, X., Gast, T.F., Guo, Q., Wang, S., Jiang, C. and Teran, J., 2019. A hybrid material point method for

frictional contact with diverse materials. Proceedings of the ACM on Computer Graphics and Interactive

Techniques, 2(2), pp.1-24.

Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A. and Jiang, C., 2018. A moving least squares material

point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on

Graphics (TOG), 37(4), pp.1-14.

Müller, M., Stam, J., James, D. and Thürey, N., 2008. Real time physics: class notes. In ACM SIGGRAPH

2008 classes (pp. 1-90).

Nealen, A., Müller, M., Keiser, R., Boxerman, E. and Carlson, M., 2006, December. Physically based

deformable models in computer graphics. In Computer graphics forum (Vol. 25, No. 4, pp. 809-836).

Oxford, UK: Blackwell Publishing Ltd.

Sifakis, E. and Barbic, J., 2012. FEM simulation of 3D deformable solids: a practitioner's guide to theory,

discretization and model reduction. In Acm siggraph 2012 courses (pp. 1-50).

Stomakhin, A., Schroeder, C., Chai, L., Teran, J. and Selle, A., 2013. A material point method for snow

simulation. ACM Transactions on Graphics (TOG), 32(4), pp.1-10.

Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J. and Selle, A., 2014. Augmented MPM for phase-

change and varied materials. ACM Transactions on Graphics (TOG), 33(4), pp.1-11.

Sulsky, D., Zhou, S.J. and Schreyer, H.L., 1995. Application of a particle-in-cell method to solid mechanics.

Computer physics communications, 87(1-2), pp.236-252.

Wang, S., Ding, M., Gast, T.F., Zhu, L., Gagniere, S., Jiang, C. and Teran, J.M., 2019. Simulation and

visualization of ductile fracture with the material point method. Proceedings of the ACM on Computer

Graphics and Interactive Techniques, 2(2), pp.1-20.

Wang, X., Qiu, Y., Slattery, S.R., Fang, Y., Li, M., Zhu, S.C., Zhu, Y., Tang, M., Manocha, D. and Jiang, C.,

2020. A massively parallel and scalable multi-GPU material point method. ACM Transactions on Graphics

(TOG), 39(4), pp.30-1.

Wolper, J., Chen, Y., Li, M., Fang, Y., Qu, Z., Lu, J., Cheng, M. and Jiang, C., 2020. AnisoMPM: Animating

anisotropic damage mechanics: Supplemental document. ACM Trans. Graph, 39(4).

Wolper, J., Fang, Y., Li, M., Lu, J., Gao, M. and Jiang, C., 2019. CD-MPM: continuum damage material point

methods for dynamic fracture animation. ACM Transactions on Graphics (TOG), 38(4), pp.1-15.

