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Introduction 
Deformation is one of the most important aspects of the physically-based simulation. This report will 

review relevant literature and describe the method used for this project and implementation details. It 

also includes analysis and reflection on the method and implementation at the end. 

Literature Review 

Solid Mechanics 
Physically-based deformation has a long history in Computer Graphics (Nealen et al. 2006). The 
essential properties for simulating deformation are stress and strain. Stress is defined as the force 
intensity and strain is given by a normalised displacement (Bergstrom 2015). The relation between 
these properties is called a constitutive model and this distinguishes the response of different 
materials. For example, Hooke's law states linear elasticity (Müller 2008) and St. Venant-Kirchhoff 
and Neo-Hookean model are constitutive models for hyperelastic materials (Sifakis and Barbic 2012; 
Wolper et al. 2019). There are a few models for controlling plasticity, such as Johnson-Cook 
(Bergstrom 2015), Cam-Clay, von Mises and Drucker-Prager models (Wolper et al. 2019). These 
models can be used to simulate the deformation of different types of materials. 

Model Discretization 
To simulate deformation, models must be discretised. There are different methods for model 

discretisation and these can be categorised into Lagrangian and Eulerian methods (Nealen et al. 2006). 

Lagrangian methods include mesh-based methods, such as the Finite Element Method, Boundary 

Element Method and Mass-Spring, and mesh-free methods, such as the Smoothed Particle 

Hydrodynamics. Eulerian methods are usually used for fluids. 

Material Point Method 
Another method is the Material Point Method (MPM), which combines the Lagrangian and Eulerian 

methods. It was introduced by Sulsky et al. (1995) as an extension of the Fluid Implicit Particle (Brackbill 

and Ruppel 1986) for simulating solid mechanics. The first use of MPM in graphics was in 2013 by 

Stomakhin et al. where they simulated snow. Since then, it has been used to simulate various behaviours 

of materials, such as diffusion (Han et al. 2021), fracture (Hu et al. 2018; Wang et al. 2019; Wolper et al. 

2019; Wolper et al. 2020; Fei et al. 2021; Han et al. 2021), friction (Guo et al. 2018; Han et al. 2019; Fei et 

al. 2021) and phase transition (Stomakhin et al. 2014; Ding et al. 2019). 

Method 
The following method uses the traditional MPM based on Disney’s paper (Stomakhin et al. 2013) to 

simulate the deformation of elastoplastic materials in two-dimension. 



Particles to Grid 
The first step is to transfer the mass and velocity from particles to the grid. Interpolation is done by using 

dyadic products of one-dimensional cubic B-splines: 
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where 𝒊 = (𝑖, 𝑗, 𝑘) is the grid index, 𝒙𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is the evaluation position, ℎ is the grid spacing and 
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𝑁𝒊
ℎ(𝒙𝑝) will be represented as 𝑤𝒊𝑝 for later equations in this report.  

Using the above equations, the particle masses are rasterized as follows: 
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Different from FLIP, MPM uses normalized weights for velocity as the weighting does not result in 

momentum conservation: 
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Compute Particle Volumes and Densities 
The particle volumes and densities are computed only once during the first timestep. 

First, estimate a cell’s density as 
𝑚𝒊
0
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, then weight it back to the particles as 
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Then, estimate particle volumes as 
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Update Grid 
The stress-based forces on the grid are computed as follows: 
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where 𝑭𝐸𝑝
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𝑛  are the elastic and plastic part of the gradient density and 
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is the derivative of the elastoplastic potential energy density where 𝜇0 and 𝜆0 are the initial Lame 

coefficients, 𝜉 is a dimensionless plastic hardening parameter, J is a determinant of 𝑭 and 𝑹 is the 

rotation matrix of the polar decomposition of 𝑭 = 𝑹𝑺, which can be expressed as  𝑹 = 𝑼𝑽𝑇 using the 

singular value decomposition 𝑭 = 𝑼𝚺𝑽𝑇. 

The gradient of the interpolation function ∇𝑤𝒊𝑝 can be computed as: 



 

∇𝑤𝒊𝑝 = ∇𝑁𝒊
ℎ(𝒙𝑝) =

[
 
 
 
 𝑁′ (

1

ℎ
(𝑥𝑝 − 𝑖ℎ))𝑁 (

1

ℎ
(𝑦𝑝 − 𝑗ℎ))

𝑁 (
1

ℎ
(𝑥𝑝 − 𝑖ℎ))𝑁

′ (
1

ℎ
(𝑦𝑝 − 𝑗ℎ))

]
 
 
 
 

 

𝑁′(𝑥) =

{
 
 

 
 

3

2
𝑥2
|𝑥|

𝑥
− 2𝑥, 0 ≤ |𝑥| < 1

−
1

2
𝑥2
|𝑥|

𝑥
+ 2𝑥 − 2

|𝑥|

𝑥
, 1 ≤ |𝑥| < 2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(9) 

 

After computing the stress-based forces, external forces are added. 

Using the computed forces, update the grid velocities as follows: 

 𝒗𝒊
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When a collision is detected, compute the local normal 𝒏. If 𝑣𝑛 = 𝒗𝒊
∗ ∙ 𝒏 ≥ 0, the bodies are separating 

so no collision is applied, otherwise, update the velocity as follow: 

 𝒗𝑖
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Update Deformation Gradients 
First, update the elastic part of the deformation gradient temporarily by the following equations: 
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Then, compute the singular value decomposition of 𝑭𝐸𝑝
∗ : 
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To push the part of 𝑭𝐸𝑝
∗  that exceeds the critical deformation threshold, clamp the singular values to the 

permitted range as follow: 

 𝚺𝑝
𝑛+1 = 𝑐𝑙𝑎𝑚𝑝(𝚺𝑝

∗ , [1 − 𝜃𝑐, 1 + 𝜃𝑠]) (14) 

where 𝜃𝑐 and 𝜃𝑠 are critical compression and stretch. 

Finally, update the elastic and plastic part of the deformation gradient as: 
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Grid to Particles 
First, update the particle velocities using the combination of PIC and FLIP as follows: 
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where 𝛼 is the PIC-FLIP blending ratio. 



After updating the particle velocities, handle collision same as the grid velocities using the equation 11 on 

𝒗𝑝
∗  instead of 𝒗𝒊

∗. 

Finally, update the particle positions as: 

 𝒙𝑝
𝑛+1 = 𝒙𝑝

𝑛 + ∆𝑡𝒗𝑝
𝑛+1 (17) 

Implementation 
I was going to implement the simulation in Houdini at the beginning. However, there are many 

components to understand to be able to implement it in Houdini, which may take too long to complete 

the implementation in time. Therefore, I decided to implement in C++ with NGL, which I am more familiar 

with, to focus on the MPM method and completion of the simulation instead of learning new technical 

skills. 

Class Diagram 

 

Figure 1: Class Diagram 

This class diagram only includes the MPM class, which has all the variables and functions used for the 

simulation. Other classes in the program are used for GUI and visualisation of the simulation. 

 



Eigen library is used for singular value decomposition. The private “eigenVec3” function is used to 

convert the NGL vectors to Eigen vectors as the results of the decomposition are Eigen matrices, which 

cannot be calculated with NGL vectors. The private “Interpolate” and “bSpline” functions are used to 

calculate the interpolation in equations 1 and 2 and “dInterpolate” and “dBSpline” functions are used to 

calculate the gradient of the interpolation in equations 9. Other private functions are used to operate the 

steps described in the method section. The public functions are called from NGLScene class to respond to 

button actions from GUI. Collision handling is simplified as no solid object is added to the simulation 

except for the solid cells around the simulation frame. It is handled by setting the velocities on the solid 

surfaces to zero. 

GUI 

      

Figure 2: GUI. Visualisation and simulation settings on the left and saving and playing the simulation on 

the right. 

The simulated particles are visualised using NGL and GUI was implemented using Qt as shown in the 

figure above to ease the testing process. There are four shapes to initialise the particles. I used Houdini to 

generate circle shapes and exported to CSV to be loaded to the simulation. The simulation settings can be 

edited via GUI to test the implementation with different parameters and the simulation can be played 

and paused by a button click. The step button allows simulating only one timestep. The particle velocities 

and grid velocities can be visualised with red lines with the checkboxes as shown on the left image in the 

figure 2. This helped to find out errors in the implementation. 

While testing the simulation, I found out it does not work properly with a large timestep but testing with 

a small timestep makes the testing time longer. Therefore, I made a save function to save the particle 

positions as a geo file at each frame. The saved simulation can be played with the application or imported 

into Houdini. Sample simulations with different settings are included in the source code and these can be 

played by loading it on the save tab. A sample Houdini scene for comparing those simulations can be 

found in test.hipnc. 

Analysis & Reflection 
The implemented system successfully simulates the deformation of objects with different shapes and 

materials in various situations. Simulating with large timesteps and small grid sizes resulted in particles to 

be exploded. However, simulating with small timesteps takes a long time. I found that finding a suitable 

timestep is very important for the MPM simulation. Changing the parameters for the material produced 

different simulations as shown in figure 3. 



 

Figure 3: Simulation with different parameter settings. 

Simulation changed dramatically with low critical stretch but other parameter changes produced similar 

results. Even though the results look similar, there are slight differences in each simulation when looking 

at these closely. The difference should be more obvious with larger simulations but it could not be tested 

due to the time constraint. 

Although the system can simulate deformation, there are many improvements that can be made. For 

example, the simulation can be integrated into 3D simulation and made into a Houdini plugin to allow 

more user controls. This project used the traditional method introduced in 2013 but there are many 

improved approaches introduced in recent papers like Moving Least Squares MPM (Hu et al. 2018). Also, 

different constitutive models can be applied. This system is suitable for testing a simulation with a small 

number of particles as the simulation takes a very long time. The performance can be improved with GPU 

optimization (Gao et al. 2018; Wang et al. 2020). In addition, it can be improved to simulate interactions 

between multiple materials and other behaviours like diffusion and fracture. 

Conclusion 
This report covered the related background and previous works, the detailed implementation method 

and analysis and reflections of the implementation. Overall, the project can be considered successful due 

to the fact that the initial objective to implement deformation simulation using MPM has been achieved.   
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