AR INDOOR NAVIGATION FOR CAMPUS BUILDINGS

RINA FUMOTO
URN: 6498806

A dissertation submitted in partial fulfilment of the
requirements for the award of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

May 2021

Department of Computer Science
University of Surrey
Guildford GU2 7XH

Supervised by: Andrew Crossan

I declare that this dissertation is my own work and that the work of others is acknowledged and
indicated by explicit references.

Rina Fumoto
May 2021

© Copyright Rina Fumoto, May 2021

Abstract

Nowadays, smartphones have been essential tools not only for communications but also for
entertainment, business and many other purposes. Navigation apps are one of the essential
tools for smartphone users. There are many applications available for outdoor navigation but
not many indoor navigation systems are available. It is due to the difficulty of positioning and
tracking in indoor environments as GPS signal weakens in these environments. There are various
systems for indoor tracking currently available but there is no perfect solution in terms of its

precision, complexity and cost.

This project investigates approaches to improve the performance of current indoor navigation
techniques using Augmented Reality. Augmented Reality can not only help indoor positioning
and tracking but also the navigation itself. While maps and geolocation apps can be used for
navigation, these apps only provide partial information about the environment. Using Aug-
mented Reality, virtual objects appear in the real world environment to navigate users which

makes it easier for people to follow.

The usability of Augmented Reality for indoor navigation system will be demonstrated by devel-
oping a proof of concept application that can be used for navigating people in complex campus
buildings. The implemented application provides reasonable navigation performance but there

are some improvements to be made for device tracking.

Acknowledgements

I would like to take this opportunity to thank the people who have supported or helped me not

only with this project but also with my degree over the last four years.

I would like to thank my supervisor, Dr. Andrew Crossan, for his guidance and supervision with
this project, as well as the staffs at the University of Surrey and the Hong Kong Polytechnic

University for their work, help and support during my university years.

Finally, a big thanks to all my friends for all their support and encouragement.

Contents

1__Introductionl 15
M1 Overviewl o oo o 15
[1.2 Aims & Objectives| 16
[1.3 Structure of the Report| o 17

2__Literature Review 19
2.1 Introductionl. L 19
2.2 Augmented Reality| 19

[2.2.1 Marker-based Augmented Reality|. 20
[2.2.2 Markerless Augmented Reality] 22
22.3 AR Displays|. 23
[2.2.3.1 Head Mounted Displays (HMD)| 23
[2.2.3.2 Handheld Displays| 26
[2.2.3.3 Spatial Augmented Reality (SAR)| 27

2.3 Navigation|. L 28
[2.3.1 Positioning and Trackingl 0 0L, 28
[2.3.2 Pathfinding] 32
[2.3.2.1 Graph Generation| 32
2.322 Route Calculation| 33

[2.3.3 Graphical Instruction| Lo
2.4 Existing Works|
25 Conclusionl.
- g
8.1 Introduction|. L
[3.2 System Development Life Cycle (SDLC)|
3.3 Sottware Development Lite Cycle Methodologies|.

13.3.1 Heavyweight Methods|

13.3.2 Lightweight Methods|.,
3.4 Project Plan|.

[4 System Analysis|

.1.1 Purposel

5.1.2 Scopel

©.1.3 Overviewl

40

40

40

41

41

43

44

46

46

46

47

49

5.3 Specific Requirements|

[5.3.1 Functional Requirements|.

15.3.2 Non-functional

Requirements| oL

[6

System Design|

[6.3 User Interface (UI) Design|

6.4 Technology Choices| .

[7

Implementation|

[7.2 Main Implementation|

[7.2.1 Setting up|. .

[7.2.3 Marker Scanning| L

[7.2.4 Trackingl. . .

[7.2.5 Pathfinding| .

[7.2.6 AR Navigation|

7.3 Additional Implementation| 0 0 000

8

54

54

54

59

99

65

65

65

65

66

69

71

73

76

78

78

79

81

82

8.3 Requirements Testing] o

[8.3.1 Functional Requirements|.

[8.3.2 Non-tfunctional Requirements|

[C Screenshots of the Performance Testing without Markers|

[D Screenshots of the Performance Testing with Markers|

[E_SAGE Forml

102

102

102

103

104

104

105

105

105

107

108

108

109

110

112

113

114

116

List of Figures

[2.1 Examples of the square shaped markers| 21
2.2 Other types of markers|. 22
23 First HMDI . 0 00 000 24
2.4 Examples of OHMDs| 24
25 Smart Glasses|o 25
2.6 wsplay I . . o 0 0 25
2.7 The minimization of handheld devicesfor ARl 26
B _SAR] . . . oo 27
2.9 RFID system components| 29
[2.10 RF localization hierarchy| 000 30
[2.11 Waypoint graph and navigation mesh comparison| 33
[2.12 Illustration of Dijkstra’s algorithm| 34
[2.13 Illustration of path search algorithms on a grid graph|. 36
[2.14 Route visualization on 2D maps|. oo 37
|2.15 Route visualization of existing systems| 38
3.1 The waterfall modell 42
B2 The Vmodell e 43
6.1 Use case diagram| 55

6.2 Wiretrames of the Ul design| 60

6.3 AR Foundation supported features| L. 63
0 L 68
[7.2 Image quality scores given by arcoreimg toolf. 70
[7.3 Walkable area represented with planes|00 74
7.4 Resulted navigation mesh| 74
[7.5 3D objects created with Blender| 0. 76
8.1 Testing route| 83
8.2 Tracking without markers| 84
[8.3 Screenshots at the blue number 3, 5 and the red number 5/ 84
8.4 Tracking with markers|o 85

10

List of Tables

[2.1 Advantages and limitations of indoor positioning systems.| 31
3.1 Project timetablel 45
6.1 Summary of ARSDKSo o 62
7.1 Summary of the development environments| 66

11

Abbreviations

API
ACM
AR
BCS
CMA
DPA
GPS
HMD
HOM
HIT
ID
IPS
IMU
IGD
IEEE
JAD
JRP
OHMD
pPC
QR
RF
RFID
RAD
RAID

Application Programming Interface
Association for Computing Machinery
Augmented Reality

British Computer Society

Computer Misuse Act

Data Protection Act

Global Positioning System

Head Mounted Display

Hoffman Marker System

Human Interface Technology
Identification

Indoor Positioning System

Inertial Measurement Unit

Institut Graphische Datenverarbeitung
Institute of Electrical and Electronics Engineers
Joint Application Design

Joint Requirement Planning

Optical Head Mounted Display
Personal Computer

Quick Response

Radio Frequency

Radio Frequency Identification

Rapid Application Development

Risk, Assumptions, Issues, Dependencies

12

SAGE
SCR
SLAM
SDK
SAR
SDLC
3D

2D
UMPC
UWB
UML
UWP
Ul
V&V
VR
VRD
WLAN

Self-Assessment for Governance and Ethics
Siemens Corporate Research
Simultaneous Localization and Mapping
Software Development Kit

Spatial Augmented Reality

System Development Life Cycle
Three-Dimensional

Two-Dimensional

Ultra-Mobile Personal Computer
Ultra-Wide Band

Unified Modeling Language

Universal Windows Platform

User Interface

Verification and Validation

Virtual Reality

Virtual Retinal Display

Wireless Local Area Network

13

Statement of Ethics

This project does not involve any human participants, human data or tissue, or animal research
so a full ethical review is not required. However, the legal, social, ethical and professional issues
have still been considered and discussed during this project. This project does not have any
intentions to impose harm. For example, it does not include any practices that can damage
the reputation of the University, disrespect the welfare and interests of the wider community or
damage items of cultural value or the natural environment. This project has been carried out

according to the relevant code of conducts.

14

Chapter 1

Introduction

1.1 Overview

There are more than 2.7 billion smartphone users around the world and the most popular
navigation app, Google Maps, reached 5 billion downloads on the Play Store in 2019 (Khoury
2019). However, a study shows GPS-based navigation system users performed worse than direct
experience (Ishikawa, Fujiwara, Imai & Okabe 2008). This was a result of the user’s focus on

the screen which interfered with their attention to the routes and surrounding area.

This problem can be solved with Augmented Reality (AR). When AR is used for a navigation
system, the navigation and surroundings are displayed on the same screen which makes the
guidance more effective and convenient. This also helps people who have difficulty with reading

maps and finding directions (Chen, Xie, Lin, Wang & Lin 2020).

There are some existing AR navigation apps, like Google Live View (Inman 2019) and AC Tourist
(Augmented City 2021) but most of the major GPS-based navigation apps do not support indoor
environments due to the complexity of positioning and tracking of user’s location in indoor
environments, where GPS signal weakens. Without navigation apps, people struggle to locate

their destinations, especially in huge buildings.

There are many approaches to improve the performance of indoor navigation using AR. This
dissertation will investigate different technologies that can be used for AR indoor navigation
system. The findings of the investigation will be used for implementing an AR indoor navigation

app for university campus buildings to help students and staff to find their destinations. This app

15

will help freshers and returning students at the beginning of semesters to find their classrooms
in complex buildings with lots of rooms. It can also be used by applicants to look around inside
buildings on open day. The accuracy of the navigation is important as well as the installation
effort and cost because it is difficult to install equipment into numerous buildings on campuses
and spend a lot of money on navigation systems that are convenient but not necessary. Also, the
implemented system should be easy to use as there is a variety of people on campuses who are
not necessarily familiar with technologies. The findings from the development can be applied
to different use cases, such as indoor navigation systems in airports, museums and shopping

centres.

1.2 Aims & Objectives

The overall aim of this research project is to explore various approaches for indoor positioning
and tracking using AR and design and implement an AR indoor navigation mobile application

for campus buildings, which can be used by students, staff and visitors.

There are four main objectives for this project. The following is a list of the objectives with

some details:

e Review literature that is relevant to this project.

Conduct in-depth research into Augmented Reality, indoor positioning and tracking, pathfind-
ing and other technologies that can be used for AR indoor navigation system and review

existing solutions. This objective can be achieved by completing the literature review.

e Analyse current solutions and define requirements for this project.

Compare different techniques found from literature to identify the best approach for imple-
menting the AR indoor navigation system for campus buildings and define requirements
for the application. This objective can be achieved by identifying the approach for the

implementation and defining the system requirements and specifications.

e Develop a proof of concept to demonstrate the feasibility and identify potential issues that

might interfere with the indoor navigation system using AR.

Verify the idea of using AR for indoor navigation and demonstrate its functionality by

presenting a proof of concept. This objective can be achieved by designing the function-

16

alities and user interface of the new application for campus buildings according to the
defined requirements, implementing the new application that navigates people in campus
buildings to a selected destination based on the design and testing the application against

the requirements.

e Evaluate the new implemented app and provide recommendations for future works.

Evaluate findings from implementation and testing and recommend improvements that
can be made for the future. This objective can be achieved by providing the conclusions

about the success of the project and recommendations for future works.

1.3 Structure of the Report

This dissertation includes the following chapters. The structure of the report is also reflecting

the development process.

Chapter 1 Introduction

This chapter includes the overview of the project topic, aims and objectives of this project

and the structure of this dissertation.

Chapter 2 Literature Review

This chapter will review relevant literature, explore different techniques and identify some
existing solutions that relate to AR indoor navigation. In-depth research into different
types of AR, displays used for AR applications, current approaches used for indoor posi-
tioning and tracking and some pathfinding algorithms will be conducted in this chapter.

Some existing works for AR indoor navigation will be introduced at the end of this chapter.

Chapter 3 Planning

The System Development Life Cycle and some popular methodologies that are used by
the software industry will be mentioned in this chapter. A methodology for this project
will be chosen and the timeline for this project will be planned to ensure the project will

be completed successfully in time.

Chapter 4 System Analysis

17

This chapter will analyse different technologies that have been provided by the literature
review. The best approaches for this project will be identified to define the requirements

and specifications for developing the new application.

Chapter 5 System Requirements and Specifications

This chapter will provide detailed requirements and specifications required to successfully
complete the AR indoor navigation app. The overview, functions and constraints of the
system will be provided. The specific requirements for the system will be provided in the
last part of this chapter. This part includes both functional and non-functional require-

ments.

Chapter 6 System Design

This chapter will build up a design for the application according to the system requirements
and specifications defined in the previous chapter. A use case diagram and UI will be
designed and different libraries and development tools will be explored and compared to

identify the suitable ones for this project.

Chapter 7 Implementation
This chapter will describe how the final application was implemented in detail. Different
approaches taken for the implementation and challenges and problems encountered during
the development process will be explained.

Chapter 8 Testing/Validation
This chapter will provide descriptions of how the implemented system was tested and the
results gained from the testing. The testing results will be evaluated at the end of this
chapter.

Chapter 9 Legal, Social, Ethical and Professional issues

In this chapter, the legal, social, ethical and professional considerations of the current
project will be discussed to ensure that the project is carried out according to the relevant

code of conducts.

Chapter 10 Conclusions and Future Work

This chapter will provide the overall project conclusions, as well as recommendations for

future development.

18

Chapter 2

Literature Review

2.1 Introduction

This chapter will review relevant literature, explore different techniques and identify some ex-
isting solutions that have been used for AR indoor navigation. This chapter will first look at
different types of AR and displays used for AR applications. Then, it will look into current

approaches used for indoor positioning and tracking and some pathfinding algorithms.

2.2 Augmented Reality

Augmented Reality (AR) is a technology that combines the real world environment and a com-
puter generated virtual information in real time. Using AR, the virtual objects and real objects
coexist in three dimensions. It is based on techniques developed in Virtual Reality (VR). The
fundamental difference between AR and VR is the environment. VR uses a computer-generated
virtual environment but AR uses the real environment extended with virtual information from

the system (Lee 2012).

The beginning of the Augmented Reality is the first head-mounted display system that Ivan
Sutherland developed in 1968 (Sutherland 1968). In 1990, the term "Augmented Reality" was
coined by Boeing researcher, Thomas Caudell (Thomas & David 1992). Since then, it has been
used for medical visualization, entertainment, advertising, maintenance and repair, annotation,

robot path planning and so on (Furht 2011).

AR uses different methods of computer vision to understand the real environment from the

19

information from cameras and render virtual objects in it. It first detects markers, images
or interest points using a camera (Furht 2011). Then, it tracks the camera movement using
feature detection, edge detection, or other image processing methods. After the system makes
connection between the 2D image and 3D world frame, it projects the 3D coordinates of the
features into the 2D image coordinates to find the camera position and orientation. Finally, it

reconstructs a real world coordinate system using the data.

AR can make navigation systems more useful. AR combines a real environment with virtual
content so a user does not only focus on a map or a device display but also pays attention to the
surrounding area while moving towards the destination. AR is not only useful for navigation
using 3D objects but also useful for positioning and tracking processes. While using AR image
processing methods, a system can identify the device position and track the device movement.
This is very useful, especially for indoor navigation. More details about indoor positioning and

tracking using AR will be explained in the following section.

Different types of AR are described in the following subsections. There are mainly two types of

AR, marker-based AR and markerless AR.

2.2.1 Marker-based Augmented Reality

Many AR systems use markers for motion tracking and position and orientation estimation
(Zhang, Fronz & Navab 2002). This type of AR first captures a marker with a camera. It then
calculates the 3D coordinates of the marker and puts the corresponding virtual object on it

(Furht 2011). Various types of markers are used for AR systems.

The most common type of marker is a square shaped vision marker as shown in figure [2.1
(Zhang et al. 2002). These markers are commonly used because the square shape provides four
prominent points that can be used to obtain the position and orientation. (Garrido-Jurado,
Murnioz-Salinas, Madrid-Cuevas & Marin-Jiménez 2014) The detection process of these markers
are the following. First, the system looks for an image that has a black square border. Then, it
checks the inner region of the marker to identify it using a binary code or an arbitrary pattern
such as an image. If it is verified as a legitimate marker, the system gets the marker ID and its

corner location (Fiala 2005b).

One of the most popular square shape markers is ARToolKit (Kato & Billinghurst 1999), which

is an open source project developed by Hirokazu Kato and Mark Billinghurst in 1999. It is

20

) ARToolKit b) ARTag) ARToolKitPlus) Matrix

) HOM) IGD) SCR

Figure 2.1: Examples of the square shaped markers

(e) Binary Square (f) BinARyID

popular because it is simple, relatively robust, and freely available (Fiala 2005a). It is useful for
many applications, but there are some disadvantages. First, it uses a correlation to verify and
identify markers, causing high false positive and inter-marker confusion rates. Second, it is very
sensitive to lightning conditions. Third, it requires a large library size to store unique markers

and processing time to correlate with all marker prototypes in the library.

ARTag (Fiala 2005a) is another marker system inspired by ARToolKit. It uses an edge based
approach instead of a template based approach used in ARToolKit so it is not as sensitive to
lightning conditions as ARToolKit. It can even cope with broken markers and it is faster than

ARToolKit because it does not need to compare with prototypes in the library (Hirzer 2008).

ARToolKitPlus (Wagner & Schmalstieg 2007) is an improved version of ARToolKit inspired by

ARTag targeted at mobile devices.

There are other square shapes markers, such as Matrix (Rekimoto 1998), BinARyID (Flohr
& Fischer 2007), Binary Square Marker (Boulanger 2004), Hoffman Marker System (HOM),
Institut Graphische Datenverarbeitung (IGD) and Siemens Corporate Research (SCR) (Zhang
et al. 2002).

There are other types of markers shown in figure Bar Codes like Quick Response (QR)
Code, Data Matrix and Maxicode can also be used for AR systems but these do not work

as well as the other markers introduced above (Fiala 2009). These are useful for encoding

21

= 7|

(d) Cybercode (e) Visual code (f) reacTIVision

Figure 2.2: Other types of markers

information but it does not work well with a large field of view and does not provide enough
image points for calculating position and orientation in a 3D space. Cybercode (Rekimoto &
Ayatsuka 2000, Ayatsuka & Rekimoto 2006), Visual code (Rohs & Gfeller 2004, Rohs 2005)
and reacTIVision (Kaltenbrunner & Bencina 2007, reacT1Vision 1.5.1 n.d.) are based on blob
detection. 2D images (Wikitude 2020) and 3D objects (Wikitude 2021a) can also work as

markers for AR systems.

AR markers can be used to identify the device position for navigation systems in campus build-
ings. Any markers mentioned in this section can be easily installed in campus buildings. If the
system knows the floor plans of the buildings and the locations of the markers, it can identify
the user’s location when the system detects a marker with a camera. The positioning can only
be done when a marker is visible in the camera frame so it is not useful for tracking the device
movement. To enable device tracking with markers, enormous numbers of markers are required

so that at least one marker is in the camera view.

2.2.2 Markerless Augmented Reality

Markerless AR is an AR system that does not require markers as the term indicates. It scans
the surrounding environment to place virtual objects rather than scanning markers so it does
not need a prior knowledge of the environment (Schechter 2020). It is used in various industries,

for example, there is an interior design tool called "Myty" (Arty 2017). It detects a flat surface

22

in the surrounding environment and allows users to place furniture on it. Another example of
markerless AR tool is "TIME Immersive app" (Time 2019). It allows a user to place an AR
content on a flat surface, view the content from different perspective by moving the device, and

interact with it.

The main steps of markerless AR system are the following (Furht 2011, Ziegler 2009). It first
detects natural features in the environment using edge, corner detection and texture from images
or objects (Jumarlis & Mirfan 2018). Once the features have been detected, it searches for
correspondences between the detected features and features in the database to calculate the
camera’s position and orientation. After calculating the camera’s position and orientation, it

uses the result to reconstruct the 3D structure.

3D models of campus buildings can be built by scanning the natural features of the buildings
using AR. The 3D models can then be used for positioning the user location by comparing
the detected features with the features in the model. This technology can also be used for
tracking a device by comparing the features in the previous frame and the current frame. From
the difference between the feature points in these frames, the movement of the device can be
calculated. An indoor navigation system can be implemented using these techniques without

GPS signals.

2.2.3 AR Displays

There are various displays that are available for AR. AR displays can be categorised into three

types: Head-mounted, Handheld and Spatial.

2.2.3.1 Head Mounted Displays (HMD)

Head mounted displays (HMDs) are image display units that are mounted on the head (Shibata
2002). The first HMD was developed in 1968, which is shown in figure (Sutherland 1968).
It has been used by militaries, engineers and scientists (Klepper 2007). It can also be used for

games, VRs and personal theater systems (Shibata 2002).

Optical HMD (OHMD) uses a semi-transparent surface to allow users to see both a real envi-
ronment and artificial images (Cutolo, Cattari, Fontana & Ferrari 2020). Several OHMDs are

commercially available, such as Magic Leap 1 (Magic Leap 2021), HoloLens 2 (Microsoft 2021)

23

Figure 2.3: First HMD

and Meta 2 (Schenker Technologies GmbH n.d.) as shown in figure

(a) Magic Leap 1 (b) HoloLens 2 (¢) Meta 2

Figure 2.4: Examples of OHMDs

Using OHMD, AR smart glasses are developed. Smart glasses are computer devices that can be
worn like regular glasses (Rauschnabel, Brem & Ro 2015). Smart glasses contains sensors and
processing capabilities, which allow users to interact with the physical world with augmented
information in real-time (Lee & Hui 2018). Google Glass is the first smart glasses set that
became commercially available. Currently, several AR smart glasses are available for multiple
purposes, such as manufacturing, logistics, healthcare, entertainment and education (ﬁgure

(Google 2021 ¢, Epson 2021b).

There is another HMD that uses a different display technology called "Virtual Retinal Display
(VRD)". It projects a beam of light directly onto the retina of the eye (Silva, Oliveira & Giraldi
2003). It was invented at the University of Washington in the Human Interface Technology Lab
(HIT) in 1991 (HITLab n.d.). An example of AR smart glasses using VRD is RETISSA Display
IT developed by QD Laser, a Japanese laser maker, as shown in figure (QD Laser 2020).

24

(a) Google Glass (b) Epson Moverio (Epson 2021a)

Figure 2.5: Smart Glasses

Figure 2.6: RETISSA Display I1

The relatively new wearable devices that are used for AR is AR Smart lenses. The first prototype
of the electronic contact lenses were presented by researchers from the University of Washington
in 2009 (Parviz 2009). Sony was granted a patent for smart contact lenses in 2016 (Sako, Iwasaki,
Hayashi, Kon, Nakamura, Onuma & Tange 2016). After 3 years from that, Samsung has been
granted a patent for AR smart contact lenses (Kim, Hwang, Kim, Ahn & Chung 2019). These
lenses includes not only a display but also a camera, antenna and sensor. The sensor can detect
a motion of an eyeball and a blink of an eye. Mojo Vision (Mojo Vision Inc. 2021) is also working
on the AR contact lenses called "Mojo Lens". The CEO of Mojo Vision, Drew Perkins, wore

the Mojo Lens and became the first person to watch a movie with his eyes closed (Martin 2020).

HMDs can be used for AR navigation system as these devices includes elements, such as a
camera, screen and sensor, that are required for displaying AR contents for navigation and
detecting features for positioning and tracking. One of the advantages of using HMDs for AR
navigation system for campus buildings is that users do not need to hold a device in their hand.
Carrying a bag in one hand and holding a device or a map in the other hand on the way to
a lecture room would be uncomfortable for students but if they use HMDs, they can use a
navigation system without using their hands. However, these devices are quite expensive in that

it is difficult for students and staff to afford.

25

2.2.3.2 Handheld Displays

Handheld AR is very popular. It has been used in many fields, such as in education, tourism,
medical science, entertainment and retail. One of the reason why it is popular is because users do
not need to carry extra devices to use AR applications as most people already have smartphones
or tablet PCs. These devices contains features necessary for AR applications, such as a camera,
sensors, display and processors. It is also cheaper than other special displays (Haque, Islam,

Salma, Al Jubair & Weng 2020).

Handheld devices for AR became smaller and smaller having started from backpack with HMD
(figure (a)). It was replaced with UMPC (figure (b)), then replaced with PDAs (figure
(¢)) and mobile phones (figure[2.7] (d)) (Wagner & Schmalstieg 2009). Recently, smartphones
and tablet PCs are used as AR handheld devices.

[
I

o 0
ol

1

(a) (b) () (d)

Figure 2.7: The minimization of handheld devices for AR

The popularity of handheld AR increased with the appearance of AR games, like Pokemon GO
(Niantic, Inc. 2020). Few years ago, Apple and Google released AR platforms called ARKit
(Apple Inc. 2021) and ARCore (Google 2020) to support AR applications in their operation

systems.

Handheld devices, such as smartphones and tablet devices, contains required features for AR

applications and there are many tools for developing AR applications for these devices so these

26

are suitable devices for this project. Smartphones are owned by most of students and staff so
they can use the newly implemented application by installing it on their smartphones without

purchasing a new device.

2.2.3.3 Spatial Augmented Reality (SAR)

Spatial Augmented Reality (SAR) augments the user’s physical environment with images that
are projected directly onto objects in the user’s environment using digital light projectors as
shown in ﬁgure (Jin, Seo, Lee, Ahn & Han 2020). It allows the user to better understand the
virtual content. The users not only view digital information but also gain a tactile understanding
by interacting with physical objects. SAR can project images onto not only flat surfaces but
also 3D objects (Thomas, Marner, Smith, Elsayed, Von Itzstein, Klein, Adcock, Eades, Irlitti,
Zucco et al. 2014). Projecting graphics onto an object can change its surface appearance as if
it is made of a different material. For example, it can change the floor to other materials such
as carpet or mossy bogs (Benko, Wilson & Zannier 2014). SAR can also be used for moving
objects using real-time depth capture. SAR can avoid the discomfort of wearing or holding a
device because the device of SAR is separate from users (Jin et al. 2020). SAR has been used

for training, maintenance, on the job assistance, and design (Furht 2011).

Physical Object

Projected Image

Projector

User

Figure 2.8: SAR

27

SAR can also be used for an AR navigation system by detecting user’s movement using real-
time depth capture and displaying AR contents in the environment for navigation. Users are not
required to wear or hold any devices so the navigation can be done very comfortably. However,
it will be a tough work to install equipment, such as projectors and cameras, for the system in
all the campus buildings and getting many of the equipment will be overpriced to purchase just

for the indoor navigation system.

2.3 Navigation

To navigate a user, the system first needs to locate the user’s position. After locating the user’s
position, it calculates an optimal route to the destination. The system also needs to be able
to track a user’s movements. In this section, different approaches for positioning, tracking and

pathfinding are discussed.

2.3.1 Positioning and Tracking

One of the difficulties of developing indoor navigation is the complexity of positioning and
tracking of user’s location in indoor environment. Major outdoor navigation apps use Global
Positioning System (GPS), which cannot be used indoors because the signals from the satellites
are scattered and attenuated by buildings (Koyuncu & Yang 2010). There are various Indoor
Positioning Systems (IPS) that can be used for indoor applications without relying on GPS or

any other satellite technologies.

According to Khoury and Kamat (2009), indoor tracking using Wireless Local Area Networks
(WLAN) covers a large area and it is not blocked by obstacles between the access points and
devices because radio waves can penetrate most of indoor objects. However, interactions with
objects can affect the propagation of energy, which can reduce the range and coverage of the
system. Also, access points have to be placed beforehand to use the system, which requires a lot
of work, especially in a huge area. The accuracy of this technology is not high enough to locate

devices with high-precision.

Teizer, Venugopal and Walia (2008) introduced sensing technology called Ultra-Wide Band
(UWB) that can be used for positioning in three-dimensions. UWB is a wireless technology

used to transmit data using narrow-pulse radio frequency (RF). The utilization of short RF

28

pulses provides precision for the time difference of arrival measurements and avoids multipath
propagation in indoor environments. UWB generates wide bandwidth up to 1,000m, which
covers a large area. UWB technology can be used with other radio technologies without any
interference. UWB has an advantage over other positioning systems, such as GPS and RFID,

because it can provide accurate 3D location values in real time.

Kang and Tesar (2004) stated that Indoor-GPS is a positioning system which uses battery-
operated transmitters and a receiver. A transmitter creates one-way position information and
the relative azimuth and elevation from the transmitter to the receiver with laser and infrared
light. The information is transmitted to the receiver GPS-like signals through a wireless network
connection. Users can determine the position of the receiver with the information from multiple

transmitters. The accuracy increases as the number of the transmitters increases.

Radio Frequency Identification (RFID) is a wireless technology that automatically identifies and
tracks objects by transmitting data using RF (Motamedi, Soltani & Hammad 2013). As RFID
uses RF, it does not require line of sight. RFID system consists of a reader and a tag as shown

in figure (Li & Becerik-Gerber 2011). A tag contains data that can be accessed wirelessly.

Antenna

Radio wave
//I | ‘
Reader

Tag

Figure 2.9: RFID system components

Using RFID for indoor localization is challenging because the changes in signal are difficult to
predict due to radio propagation, multipath effects and line of sight signal propagation (2007).
There are multiple RFID localization methods as shown in figure (Motamedi et al. 2013).

RFID low-cost indoor localization solutions with a mean error of 1-2 m are presented by Razavi

and Moselhi (2012) and Montaser and Moselhi (2014).

Inertial Measurement Unit (IMU) is a combination of three orthogonal rate-gyroscopes and ac-

29

RF Localization
Techniques
|
[| 1 | 1
Angulation Trilateration Neighborhood Fingerprinting Proximity
ADA TOA = TDROA kNN SMP ANN
RTOF == POA SWM Probabilistic

R55-based — Hop-Based

Figure 2.10: RF localization hierarchy

celerometers, which measure angular velocity and linear acceleration respectively. The position
and orientation of a device can be tracked with the signals from these devices (Woodman 2007).
However, positioning system using IMU has a high error propagation due to small errors dis-
tracting the gyroscope signals, which makes tilt errors grow rapidly with time in the tracked
orientation. The simulation by Woodman (2007) shows that the average error exceeds 150 meters

after 1 minute of operation.

There are several approaches to investigate different approaches to improve the performance of
indoor navigation using AR. There are basically two types of AR used for indoor positioning

and tracking, which are marker-based and markerless AR as mentioned in section 2.2}

AR markers can be used to identify the position and content to display by estimating the camera
position and orientation (Wang, Kim, Love & Kang 2013). Park, Lee, Kwon and Wang (2013)
used marker-based AR with building information model to map a virtual model onto the real
space. However, many markers need to be installed in the environment, which requires high
preparation efforts and there can be aesthetic problems (Neges, Koch, Konig & Abramovici

2017).

Markerless AR positioning and tracking can be achieved by building 3D point clouds using a
camera and generating a 3D map of the area (Neges et al. 2017). Simultaneous localization and
mapping (SLAM) can be used for generating a 3D map and determining the current camera
position by comparing the detected points with the points in the generated map. This method
is required to capture and store a lot of information, which increase the implementation and

maintenance costs.

30

Neges et al. (2017)

evaluated the positioning approaches introduced above as shown in table

2.1
Approach Additional IT Data Continuous Accuracy
infrastructures preparation positioning
required effort
WLAN - Specific o Signal + Depends on o Building-
infrastructure measurement at | signal coverage specific
installation reference points disruptive
factors
RFID - Specific o Signal + Depends on o Building-
infrastructure measurement at | signal coverage | specific
installation reference points disruptive
factors
Indoor-GPS - Specific -++ None + Depends on + Building-
infrastructure signal coverage specific
installation disruptive
factors
3D- + 3D scanner — Cleaning + Depends on + Depends on
Maps/SLAM for initial data recorded point point cloud point cloud
creation clouds quality quality
IMU ++ High ++ Real time ++ - High error
availability of Permanently propagation
integrated IMU

(++ very good/positive; + good/positive; o average; - poor/negative; — very poor/negative.)

Table 2.1: Advantages and limitations of indoor positioning systems.

Although WLAN, RFID and Indoor-GPS provide reasonable tracking accuracy, these approaches
require a specific infrastructure installation, which will be very intimidating to prepare for mul-
tiple huge and complex buildings on campuses. Tracking using SLAM provides a good accuracy
but it requires a lot of information of the environment to be captured beforehand. This is not
feasible for campus buildings. IMU is highly available and there is no need for preparation so

it is easy to implement. However, IMU does not provide a good accuracy, which can cause the

31

failure of the navigation function. AR markers can identify an accurate position but it requires

a lot of markers to be installed to track the user’s position continuously.

2.3.2 Pathfinding

To navigate a user, the system needs to find an optimal route from the user’s current position
to the destination. There are mainly two steps in pathfinding: a graph generation and a route

calculation.

2.3.2.1 Graph Generation

To find walkable paths and calculate the shortest route from the current position to a destination,
the environment has to be represented as a graph. There are several different techniques for graph

generation. The most common representations are waypoint graphs and navigation meshes.

The waypoint graph is one of the techniques to represent an environment. Waypoints are
representations of important points on a walkable area. All places in the walkable area in the
environment have to be reachable from any waypoint by travelling along the waypoints (Graham,
McCabe & Sheridan 2003). A waypoint graph can be generated manually or automatically
by connecting the each pair of waypoints if the object can travel to it without collision with
obstacles, which can be used to calculate a route (Zhu, Jia, Wan, Yang, Hu, Qin & Cui 2015).
Waypoint graphs are simple data structures but they require a lot of waypoints for complex

environment to provide a better path (Cui & Shi 2011).

Another widely used map representation is a navigation mesh. It can be represented by triangles,
polygons or other ways (Abd Algfoor, Sunar & Kolivand 2015). It can describe a walkable surface
of both 2D and 3D environments (Graham et al. 2003). Each polygon in a mesh is used as a
node for finding a path. A navigation mesh can also be generated manually or automatically.
There are many algorithms to automate the generation of navigation mesh (Golodetz 2013).
The main advantage of the navigation mesh is that it can represent the environment accurately
without using a lot of memory because large areas can be represented by a few large polygons
(Brand 2009). However, it is difficult to build and manage. It is important to generate a graph
that is highly simplified and easy for pathfinding (Cui & Shi 2011).

Both techniques can be used for the AR navigation system in campus buildings using floor

32

plans. As shown in figure (Epic Games, Inc. 2012), navigation mesh finds shorter paths by
searching much less data. Therefore, the pathfinding behaviour in using a navigation mesh is

better than using a waypoint graph.

------] Waypoint gragh S Higher Density Waypoint Graph Navigation Meak

2

NN

-
by

"

~

.

"

Figure 2.11: Waypoint graph and navigation mesh comparison

2.3.2.2 Route Calculation

After the routing graph is generated, a path search algorithm is applied to calculate a path
with the shortest distance. There are many solutions for short path problem. The two most

commonly used algorithms are Dijkstra’s algorithm and A* search algorithm.

Dijkstra’s algorithm computes the shortest path between two nodes on a weighted graph for
the case in which all edge weights are non-negative This algorithm was proposed by Edsger W.
Dijkstra in 1959 (Dijkstra et al. 1959). This algorithm chooses a path between a pair of vertices

that has a minimum weight on each step.

The pseudo-code for the Dijkstra’s algorithm is as follows (Kallmann & Kapadia 2016):

Dijkstra(s, t)
Initialize Q with (s, t), set g(s) to be 0, and mark s as visited;
while (Q not empty) do

v <- Q.remove();

if (v =t) return reconstructed branch from v to s;

for each (neighbors n of v) do

33

if (n not visited or g(n) > g(v) + c(v, n) then
Set the parent of n to be v;
Set g(n) to be g(v) + c(v, n);
if (n visited) Q.decrease(n, g(n));
else Q.insert(n, g(n));
Mark n as visited, if not already visited;
end if
end for
end while
return null path;

This algorithm takes the start node s and goal target node t as inputs and outputs the computed
shortest path from s to ¢ or null if it does not exist. @ is a priority queue that stores and sorts
the nodes according to their current cost-to-come costs, which can be retrieved with function
g(n). Q.insert(n,c) stores node n with priority cost ¢, @.remove() removes and returns the
node with the smallest cost in @ and Q.decrease(n, ¢) replaces the priority of n that is already
in Q to the new priority ¢. The running time of this algorithm depends on the time taken
for each operation in Q. The total running time is O(mlogn) when @ is implemented with a

self-balancing binary search tree or with a binary min-heap.

Figure 2.12: Illustration of Dijkstra’s algorithm

Figure (Cormen, Leiserson, Rivest & Stein 2009) shows an illustration of the Dijkstra’s
algorithm by steps. The algorithm start with the vertex s. The smallest weight from vertex s is

shown within the vertices and paths are indicated with shaded edges.

34

A* search algorithm (Hart, Nilsson & Raphael 1968) is another algorithm that solves the shortest
path problem, which is an extension of the Dijkstra’s algorithm. It performs better than the
Dijkstra’s algorithm using heuristics which are based on knowledge about the specific problem
being solved. The main idea of this algorithm is to expand nodes considering their estimated

distances to the goal.

The pseudo-code for the A* search algorithm is as follows (Kallmann & Kapadia 2016):

AStar(s, t)
Initialize Q with (s, 0), set g(s) to be 0, and mark s as visited;
while (Q not empty) do
v <- Q.remove();
if (v =t) return reconstructed branch from v to s;
for each (neighbors n of v) do
if (n not visited or g(n) > g(v) + c(v; n)) then
Set the parent of n to be v;
Set g(n) to be g(v) + c(v, n);
if (n visited) Q.decrease(n, g(n) + h(n));
else Q.insert (n, g(n) + h(n));
Mark n as visited, if not already visited;
end if
end for
end while
return null path;

Only two lines are changed from the Dijkstra’s algorithm, where a cost function f(n) = g(n) +
h(n) is used instead of g(n) to sort the nodes in Q. g(n) is the same cost-to-come cost used in
the Dijkstra’s algorithm and h(n) is the heuristic cost that estimates the cost of the lowest-cost
path from n to the target node. The worst-case running time complexity is the same as the

Dijkstra’s algorithm.

Figure (Kallmann & Kapadia 2016) illustrates the Dijkstra’s algorithm and the A* search
algorithm finding a path from green point to the red point on a grid graph, respectively. The
highlighted nodes are the nodes in). As shown in the figures, the Dijkstra’s algorithm reaches
to the goal at 484 iterations and find the optimal path at 486 iterations, while the A* search
algorithm encounters the goal at 321 iterations and reaches the solution in 322 iterations. It can
be seen that the nodes that are closer to the goal expands faster with the A* search algorithm.
Both algorithms can be used for this project but the A* search algorithm is preferred to be used

as it can find the optimal path faster than the Dijkstra’s algorithm.

35

(a) 100 iterations (b) 385 iterations

(c) 484 iterations (d) 486 iterations

a) Dijkstra’s algorithm

(a) 85 iterations (b) 285 iterations

[k
i

(c) 321 iterations (d) 322 iterations

(b) A* search algorithm

Figure 2.13: Illustration of path search algorithms on a grid graph

2.3.3 Graphical Instruction

After finding the optimal path, the path should be visualized to navigate the user to the desti-
nation. The existing 2D navigation systems like Google Maps (Google 2021d) and Apple Maps
(Apple 2016) use a moving blue dot on the 2D map to indicate the user’s current location and
a blue beam icon to show the direction that the device is facing at. When the user chooses
a destination, routes to the destination are displayed with a solid or dotted line as shown in
figure When the user starts the navigation, the direction from the current location to the
destination is indicated with an arrow. When a compass is enabled on the device, the map

rotates automatically based on the user’s direction of movement.

% University
) Of Surrey

=
%% Southway s Q
]
L)

Southwa)

A rONE
aeech G0

o Superstore

University B e 0-2—

of Surrey: > Egeton
75,
g

"
¢
m r% 6'9"9 wase®
(a) Apple Maps (b) Google Maps

Figure 2.14: Route visualization on 2D maps

Existing AR navigation systems use different approaches for route visualization as shown in
figure . Google Live View (Inman 2019) uses 3D arrows to show a direction to a destination.
It displays an auto-rotate 2D map with showing the current location and the path at the bottom
of the screen. The destination is indicated with a 3D icon. Gatwick Airport Official app (Gatwick
Airport Limited 2017) shows a line on the floor in the real world to navigate a user. ViewAR’s
GuideBOT Template (ViewAR GmbH 2021) navigates a user with a virtual character’s guidance.

This template allows to put descriptions at the destinations.

As mentioned earlier, combining the virtual contents and the real world would allow users to
pay more attentions to their surroundings which can reduce accidents. It will be helpful for the
navigation system in campus buildings, especially when many students are walking to different
lecture rooms in a building during a break time. Having navigation in a 3D space is more

straightforward because users are not required to read a map. It makes the navigation easier

37

Fallcwer the line

(a) Google Live View (b) Gatwick Airport Official (c) ViewAR GuideBOT

Figure 2.15: Route visualization of existing systems

for them to follow. Displaying a 2D map with a path on the device screen can help the user to
identify their location and the overview of the route to the destination. Displaying an icon to
show the device orientation and auto-rotate function would be useful when the user wants to
know which direction the user is moving on the map. Visualization of the route in a 3D space can
be done by different approaches as mentioned above. Different approaches for showing graphical
instructions for this project including displaying a 2D map with additional information, such
as the user’s position and orientation and a path to destination, and route visualization in 3D

environment will be discussed in the following chapter.

2.4 Existing Works

There has been much research into indoor navigation systems using AR. For example, Neges and
others (2017, 2014) presented natural markers based AR indoor navigation for facility mainte-
nance and Rustagi and Yoo (2018) demonstrated AR indoor navigation app that uses tile sets.
In 2017, Gatwick airport installed 2,000 beacons to enable AR indoor navigation (Gatwick Air-
port Limited 2017). Passengers can find places, such as check in areas, departure gates, baggage
belts, in 3D using the Gatwick app. GuidiGO (GuidiGO, Inc. 2021) offers AR solutions including
navigation for museums and cultural institutions and ViewAR (ViewAR GmbH 2021) provides

templates to create AR indoor navigation apps.

38

2.5 Conclusion

In this chapter, different techniques and approaches that can be used for this project have
been introduced. There are two types of AR, marker-based and markerless, which both have
advantages and disadvantages for a navigation system. AR markers can be easily installed and
used for identifying the user’s position but it is only possible when the marker is visible in
the camera frame so many markers are required to track the user’s movement. On the other
hand, markerless AR can be used for indoor tracking but it costs a lot to build a 3D model of
the area. Various positioning and tracking approaches that are currently available for indoor
environments but each approach has disadvantages in terms of preparation, accuracy or cost.
With regards to the pathfinding algorithms, using a navigation mesh as a graph representation
of the environment finds shorter path with less data compared to a waypoint graph. It is found
that the A* search algorithm calculates the optimal path faster than the Dijkstra’s algorithm.
Different approaches introduced in this chapter will be compared and the best approach for this

project will be decided in later chapter of this dissertation.

39

Chapter 3

Planning

3.1 Introduction

This chapter will review the System Development Life Cycle and some popular methodologies
that are used by the software industry. After that, a methodology for this project will be chosen

and the timeline will be planned to ensure the project will be completed successfully in time.

3.2 System Development Life Cycle (SDLC)

SDLC is a generic definition of a systems project. It contains mainly four phases: Planning,

Analysis, Design and Implementation.

The first step of the planning phase is to consider the need of the system. The outputs of
this step are the system’s project description and feasibility. Next step is to plan and staff the
project. A staff list and a Gantt chart can be created in this step. Risks, Assumptions, Issues,

Dependencies (RAID) and the budget are considered in this phase.

After the planning phase, there is the analysis phase to understand the requirements of the
system. In this phase, who, what, when and where the system will be used are considered.

System requirements and specifications are defined in this phase.

In the design phase after the system requirements and specifications are defined, how the system
actually functions is considered. Details of the system are designed in technological terms. For

example, database design, user interface design and UML diagrams are created.

40

After designing the system, the implementation phase begins. This phase includes development,
testing and evaluation of the system. First of all, the system is developed according to the
design created in the previous phase. The development includes implementation of the actual
product that fulfills the requirements and specifications. The next step after implementing the
actual system is testing. Test plans for the system are designed first and the system is then
tested according to the plans. After that, the test results are evaluated and checked to see if the

system satisfies the requirements and specifications defined in the analysis phase.

The system will be maintained repeatedly after the completion of the project.

3.3 Software Development Life Cycle Methodologies

SDLC can help to define clear stages in the process and linkage between process, people and
solutions. However, it does not tell us exactly what is needed when since it is a generic approach.
There are several software development life cycle methodologies to help this problem. There are

two types of methodologies: heavyweight and lightweight.

3.3.1 Heavyweight Methods

Heavyweight methods are popular traditional development techniques which rely on a well-
defined problem and focus on one long development cycle. An example heavyweight method is

the waterfall model.

The waterfall model is a traditional method for software development attributed to Royce (Royce
1987). Figure shows the project phases and key documentation plans for each phase in the
waterfall model. The waterfall model is a phased approach so each stage is completed before the
next stage starts. Therefore, requirements must be well-understood and the design must meet
requirements. Verification and validation (V & V) are important to this model. The system has
to be verified if it meets its requirements and is validated to check that it meets the user’s needs

in each phase.

41

SYSTEM
REQUIREMENTS

N

SOFTWARE
REQUIREMENTS
DOCUMENT NO. 1 PRELIMINARY
SOFTWARE PROGRAM
REQUIREMENTS DESIGN

DOCUMENT NO. 2 DOCUMENT NO. 5§

PRELIMINARY ANALYSIS E:
DESIGN e

(sPEC) \
DOCUMENT NO. 4

PROGRAM FINAL

= B DESIGN DESIGN
DOCUMENT NO. 3 |§ {AS BUILT)

INTERFACE
pesicn |l ﬁ/
(SPEC)

DOCUMENT NO. 5
1™ TestpLan

e —— CopING (SPEC)

TEST RESULTS
DOCUMENT NO. 4
FINAL \

DESIGN
(SPEC)

TESTING

DOCUMENT NO. 4
° FINAL
DESIGN
(SPEC)

N

OPERATIONS

DOCUMENT NO. 6
OPERATING

INSTRUCTIONS ‘

Figure 3.1: The waterfall model

The V model is an extension of the waterfall model. The workflow of this model is shown in
figure (Moschoyiannis 2018). As shown in the figure, there is an associated testing phase for

each single development phase.

Heavyweight methods have been popular because of their sequential documentation and trace-
ability, which enables a trace where a requirement is met. These methods are simple and easy
to use and work well for smaller projects with well-understood requirements. However, there
are some disadvantages. For example, it is difficult to plan and design in details at first and it

is inflexible due to the fixed design defined at the beginning of the project.

42

./

Figure 3.2: The V model

3.3.2 Lightweight Methods

Lightweight methods are adaptive approaches that provide solutions in dynamic environments.
It allows work on partially defined problems and focus more on implementation. It is adaptable

to rapidly changing environments.

The Agile model is a framework that divides the project into lots of short development cycles. A
working system is built at the end of every cycle. It allows users to get involved at early stages.
The Agile model is a representation of the various approaches that follows the principles stated
in the Manifesto for Agile Software Development (Beck, Beedle, Van Bennekum, Cockburn,

Cunningham, Fowler, Grenning, Highsmith, Hunt, Jeffries et al. 2001).

The prototyping model is one of the Agile models which is used to explore user requirements and
feasibility. In this model, a prototype, which is a working solution of the system with limited
functionality, is first created and tested by customers. There are different types of prototyping.
The throwaway prototyping discards prototypes so it will not be the part of the final system.
The evolutionary prototyping keep prototypes and develop these into the actual solution. The
prototyping model is useful and effective when requirements are uncertain at first. This model
can help to detect problems at early stages. However, it requires experienced developers and

customers with some knowledge about the system.

Rapid Application Development (RAD) model is another method that can be used for software
development. It is an incremental approach based on evolutionary prototyping. The timescale of
the project is decided at the beginning. This method uses Joint Requirements Planning (JRP)

and Joint Application Design (JAD) to develop solutions with users. RAD models can reduce

43

development time and increase reusability of components produced during the process.

Extreme Programming is another type of the Agile model which supports fast and continuous
development by splitting the project in short iterations and releasing small solutions. Extreme
Programming involves quick planning and simple design. Coding is done by pairs of developers
where two developers work on the same screen and users get involved in the development. This

approach can provide rapid development with low risks.

The last example of the Agile model is Test-driven Development. It is an incremental develop-
ment approach that starts with testing. Developers first write the tests for the new functionality
and run all system tests. The tests fail because no code has been written for the new functional-
ity. After writing and running the tests, changes are made to the system so that the system pass
all the tests. This process is repeated until all the functionalities for the system are complete.

This approach requires less debugging time.

3.4 Project Plan

For this project, the Agile model with evolutionary prototyping approach is chosen because the
required functionalities are not certain at the beginning and using the evolutionary prototyping
approach allows the addition of functionalities after starting the implementation. Functionalities
will be implemented one by one and tested by myself to check that the system meets the

requirements.

The Gantt chart attached in Appendix A was created to show the work plan and timeline for
this project. The chart was created using "Simple Gantt Chart" template for Excel by Vertex42
(Vertex42 2020). The project has been split into three parts, which are Research, Develop-
ment and Dissertation. Dissertation will be written while the corresponding part of research
or development is being carried out. The tasks cover the objectives for the projects. After
the basic implementation has been done, testing and implementation will be done repeatedly.
The sky-blue vertical lines show the breaks of the project which are for exams and holidays but
these breaks can be used in case of any delays in the process. Important dates for the project
are included in the chart and progresses of each task can be recorded in the sheet which then
visualize with the colour changes of the bars. This helps to identify the overall progress of the

project. Table [3.1] shows the timetable for this project.

44

Task Start Date | End Date
Project Overview 09/11/20 | 09/11/20
Important Interim Discussion Period 16/11/20 | 29/11/20
Date Draft Report Submission 15/03/21 | 15/03/21
Final Submission 18/05/21 | 18/05/21
Select a topic 30/09/20 | 11/10/20
Augmented Reality 12/10/20 | 18/10/20
Research AR indoor navigation 19/10/20 01/11/20
Indoor positioning and tracking 02/11/20 | 22/11/20
Pathfinding 23/11/20 | 06/12/20
Evaluate/Indicate approaches 07/12/20 | 13/12/20
System Requirements 14/12/20 | 27/12/20
Development | 1 mentation 01/02/21 | 28/03/21
Testing 01/03/21 | 11/04/21
Literature Review 12/10/20 | 06/12/20
System Requirements and Specification | 07/12/20 | 27/12/20
System Design 01/02/21 | 28/03/21
Dissertation . e
Testing/Validation 01/03/21 | 11/04/21
Conclusions and Future Work 19/04/21 | 25/04/21
Finishing 26/04/21 | 09/05/21

Table 3.1: Project timetable

45

Chapter 4

System Amnalysis

4.1 Introduction

This chapter will analyse different technologies provided in chapter [2] and identify the best ap-

proaches for this project to define the requirements for the new application for campus buildings.

4.2 AR

Indoor navigation can be done without AR but using AR brings many advantages, such as reduc-
ing accidents, providing additional technologies for indoor positioning and tracking and offering
easier navigation as mentioned in the previous chapter. Both marker-based and markerless AR
have advantages and disadvantages to be used for this project in terms of indoor positioning
and tracking. It will be discussed with other positioning and tracking technologies later in this

chapter.

Different types of displays have been introduced in section[2.2.3] To enable AR indoor navigation,
a device must contain at least a camera to detect features in the surrounding areas and a display

to show AR contents for navigation. All of the devices mentioned earlier equip these elements.

HMDs that are currently available include a sensor which can enable additional tracking ap-
proaches like IMU. These devices can be wore on the user’s head which can reduce the discomfort
from holding a device during the navigation. However, these devices are quite expensive so not

every student and staff can purchase for using a navigation system.

46

Using SAR can be more comfortable for users because it does not require them to hold or wear
any devices and users can understand virtual content better. However, the positioning and
tracking of a user, which is one of the important features of navigation system, can only be done
by using camera information since the user does not carry any devices. Also, the installation
required for enabling navigation in campus buildings using SAR would be intimidating work and

it is not affordable to purchase the numbers of cameras and projectors for this project.

Handheld devices contain sensors and processors which enables tracking methods using IMU,
WLAN and RFID. There are many tools to develop AR applications for mobile devices and
documentations and tutorials that would be helpful for me to develop my first AR application.
Also, There are various AR mobile applications that can be used as references. The biggest
advantage of using handheld devices is that many people already have their own handheld
devices, such as smartphones and tablet PCs. There are many existing mobile apps used on
campuses which makes it more likely that most of the people on the campuses have mobile

devices.

Having compared different devices, handheld devices are chosen to be used for this project owing

to the advantages mentioned here.

4.3 Navigation

Every positioning and tracking approach introduced in section [2.3.1] has advantages and disad-
vantages. Due to the disadvantages, using a single approach does not provide a good solution for
this project. This problem can be solved by combining multiple indoor positioning and tracking
technologies. As AR markers can identify an accurate position, it can be used to initialize the
user’s position and recalibrate the position when it drifts. SLAM can be used to track the user’s
movement by comparing the previously detected points and the points after the movement by
using the device camera and calculating the changes. As AR marker provides the user’s position,
a 3D map of the area is not required to track user’s position with SLAM. Therefore, combination
of AR markers and SLAM can provide accurate positioning and tracking with little preparation

and development cost.

In section 2:3.2.1] Two graph generating methods, waypoint graphs and navigation meshes,

were introduced. The navigation mesh is going to be used to represent the walkable areas of the

47

campus buildings as it can find a shorter path with less data. As described in section [2:3.2.2]
A* search algorithm finds the optimal route faster than the Dijkstra’s algorithm. Therefore, A*

search algorithm will be applied as a pathfinding algorithm for this project.

As AR is used for the new system, the navigation in a 3D environment will be the main part
of the system. Although showing a path to a destination in the 3D environment can give a
direction to the destination, it cannot provide the user’s current position and the overview of
the route. Having a 2D map on the screen enables the identification of the user’s position and
orientation and the visualization of the overview of the route. Therefore, a 2D map is going
to be displayed for the new system. There are different ways to show a path from a current
position to a destination in the 3D environment using AR objects. Navigating with an arrow
pointing at the direction to move towards would be sufficient for this project but it might be
confusing when there are two paths in front of the user. Displaying a line as a path on the floor
would solve this problem but the implementation will be more complicated as the system has
to detect a floor to place the line and other objects to identify if the objects are in front of or
behind the line. Guiding with a virtual character would be entertaining but it is more difficult
to implement. Therefore, the arrow will be used for the initial implementation and a navigation
line and a virtual character will be included as desirable requirements for this project. An AR
object shall be placed to indicate the destination in the area. Showing descriptions about the
place in the 3D environment is not necessary for navigation but it can be useful for this project.
For example, showing a name of a professor in front of their office and timetables for lecture
rooms and laboratories can be useful for university students and lecturers. This functionality

will also be included as a desirable requirement.

There are existing AR indoor navigation systems, such as Gatwick app, GuidiGO and ViewAR
as mentioned in chapter 2.4, However, it requires a lot of works and money to install numerous
beacons in campus buildings like Gatwick airport. GuideGo and ViewAR can be used for a
navigation system in campus buildings but creating the system for all buildings on a campus
will be very expensive. This project aims for developing an accurate navigation system that can

be used for various university campuses at low cost.

48

Chapter 5

System Requirements and

Specifications

5.1 Introduction

This chapter will provide an overview of the System Requirements and Specifications.

5.1.1 Purpose

This chapter is intended to provide detailed requirements and specifications required to success-
fully complete the AR indoor navigation app. Throughout this chapter, the overview, functions

and constraints of the system will be provided.

5.1.2 Scope

This app is intended to provide a navigation function in campus buildings using AR for freshers
and returning students to find their classroom at the beginning of semesters and applicants to
look around inside the buildings on open day. This chapter follows the IEEE Recommended

Practice for Software Requirements Specifications (Committee & Board 1998).

49

5.1.3 Overview

The remaining sections of this chapter contains functions, user characteristics, constraints, as-
sumptions and dependencies of the system. The specific requirements for the system is provided
in the last part of this chapter. This part includes both functional and non-functional require-

ments.

5.2 Overall Description

This section will describe the general factors that affect the product and its requirements.

5.2.1 Product functions

When the app is first started, it will ask a user to scan a marker to load a map and initialize
the user’s current position. After scanning the marker, the app will allow the user to select a
destination from a list. After the user selects a destination, the app will calculate an optimal
route from the current device position to the selected destination. It will display a path on a
2D mini map at the corner on the device screen and shows a route in the 3D environment using
AR objects. The app will track the user’s movement and updates the route in real time. The
destination point will be indicated with an AR object in 3D so that the user can identify the

destination when the user arrives.

5.2.2 User characteristics

This app is intended to be used by university students, staff and visitors. Users should have
some experiences with using smartphones but knowledge of AR is not required. Since the app
will run on a smartphone, only one user is able to control the app but multiple users can look

at the screen and follow the navigation together.

5.2.3 Constraints

ARCore supported Android devices (Google 2021a) that have Google Play Services for AR
(ARCore) installed must be used for running the app. The performance of the app would be

reduced if the user moves the device too fast which causes the camera image to be blurry as

50

AR uses information from the camera. With the same reason, it does not work in the dark
environments. Due to the pandemic, the app is developed for a campus accommodation instead

of campus buildings with multiple classrooms.

5.2.4 Assumptions and Dependencies

The app is dependent upon the device features and functions. It is assumed that the device

functions without any errors.

5.3 Specific Requirements

This section will indicate the detailed system requirements, including functional and non-

functional requirements.

5.3.1 Functional Requirements

Functional requirements define the functions that the system should perform. The requirements
are split into two categories, essential and desirable, to ensure the core requirements are covered

first.

The following is the list of system functional requirements for the app:

e Essential Requirements
FR 1.1 The system shall access the device’s camera and display the camera image on the
screen.
FR 1.2 The system shall allow a user to scan a marker.
FR 1.3 The system shall display a 2D mini map.

FR 1.4 The system shall display a sphere on the 2D mini map to indicate the current

location of the device.

FR 1.5 The system shall track the device movement and update the sphere position on

the 2D mini map.
FR 1.6 The system shall display a button to display a list of destinations.

FR 1.7 The system shall display a destination list.

51

FR 1.8 The system shall allow user to select a destination from the list.

FR 1.9 The system shall calculate the optimal path from the current location of the device

to the selected destination.
FR 1.10 The system shall show the calculated path on the 2D mini map.
FR 1.11 The system shall show the direction in a 3D environment using AR objects.

FR 1.12 The system shall calculate the optimal path from the current location of the

device to the destination in real time throughout the navigation process.
FR 1.13 The system shall update the path on the 2D mini map in real time.
FR 1.14 The system shall update the direction in 3D environment in real time.

FR 1.15 The system shall indicate the selected destination in the 3D environment with
an AR object.

FR 1.16 The system shall allow user to scan markers to reposition the current location

while walking to the destination.
Desirable Requirements

FR 2.1 The system shall display distances from the current location to the destinations

on the destination list.

FR 2.2 The system shall display the remaining distance to the destination during the

navigation process.
FR 2.3 The system shall allow the user to zoom in and out the 2D mini map.
FR 2.4 The system shall allow the user to select a destination on the 2D map.

FR 2.5 The system shall displays virtual descriptions of the places at the destinations

using AR objects.
FR 2.6 The system shall show the navigation line in a 3D environment.

FR 2.7 The system shall show the direction in a 3D environment using an animated char-

acter.

5.3.2 Non-functional Requirements

Non-functional requirements define how the system should perform in response to user input

and specific scenarios in terms of interface, operation, performance and security. Non-functional

requirements also define the constraints of the system.

52

The following is the list of system non-functional requirements for the app:

NFR 1 The system shall run on any ARCore supported Android devices.
NFR 2 The system shall respond within at most 3 seconds of a user interaction.

NFR 3 The system shall respond to the size of the device screen.

93

Chapter 6

System Design

6.1 Introduction

This chapter will build up a design for the application according to the system requirements and
specifications defined in the previous chapter. Use cases and Ul are first designed and different
libraries and development tools are explored and compared to identify the suitable techniques

for this project at the end of this chapter.

6.2 Use Case Model

A use case diagram for the new system was created to visualize the basic actions as shown in
figure [6.1] There is one actor, which is User, for this system. User can be a university student,
staff or visitor. A 2D map and a button to display a list of destinations are not displayed initially

in case that the system supports multiple locations.

54

User

Start the App

Scan a Marker

Press the Bution to
Display a List of
Destinations

App

---extend---

Select a Destination

Update the Path to the

- extend--- Destination

Figure 6.1: Use case diagram

The following are the descriptions of each action in the use case diagram.

Name

Start the App

Description

A user starts the app.

Pre-conditions

None.

Post-conditions

A camera image is displayed on the screen and scanning function is

enabled.

Actors

User

Basic Actions

1. The user starts the app.

2. The system displays the camera image on the screen.

3. The system waits for a marker to appear within the camera view.

55

Name

Scan a Marker

Description

A user scans a marker with the device camera.

Pre-conditions

The user started the system.

Post-conditions

e An accurate user’s position is indicated as a pointer on the 2D mini

map.

Actors

User

Basic Actions

1. A user scan a marker.

2. The system performs “Initialize” use case if the user scan a marker

for the first time after starting the app.
3. The system obtain the user’s position from the scanned marker.

4. The system displays the user’s position on the 2D mini map.

Name

Initialize

Description

Display 2D mini map and a button to display a list of destinations on

the device screen.

Pre-conditions

"Scan a Marker" use case is in progress.

Post-conditions

e 2D mini map is displayed on the device screen.

e A button to display a list of destinations is displayed on the device

screerl.

Actors

User

Basic Actions

1. The system displays a 2D mini map at the corner of the screen.

2. The system displays a button to display a list of destinations.

56

Name

Press the Button to Display a List of Destinations

Description

A user taps the button on the screen to display a list of destinations.

Pre-conditions

"Initialize" use case has been performed.

Post-conditions

The list of destinations is shown on the screen.

Actors

User

Basic Actions

1. A user taps the button on the screen.
2. The system displays a list of destinations.

3. The user optionally performs "Select a Destination" use case.

Name

Select a Destination

Description

A user selects a destination from the list.

Pre-conditions

"Press the Button to Display a List of Destinations" use case is in

progress.

Post-conditions

The shortest path from the current user’s position to the selected des-
tination is displayed on the 2D mini map and the direction is shown in

the 3D environment with AR objects.

Actors

User

Basic Actions

1. A user selects a destination from the list of destinations.

2. The system calculates the optimal route from the user’s current

location to the selected destination.
3. The system displays the calculated path on the 2D mini map.

4. The system displays the direction in the 3D area using AR objects.

o7

Name

Move

Description

A user moves a device.

Pre-conditions

"Initialize" use case has been performed.

Post-conditions

The user’s current location is indicated on the 2D map.

Actors

User

Basic Actions

1. A user moves the device that runs the system.

2. The system tracks the device movement.

3. The system gets the user’s current position.

4. The system updates the position of the pointer on the 2D mini

map according to the user’s current position.

5. The system performs "Update the Path to the Destination" use

case if "Select a Destination" use case has been performed.

Name

Update the Path to the Destination

Description

The system updates the optimal path from the user’s current location

to the destination.

Pre-conditions

"Move" use case is in progress.

Post-conditions

The shortest path from the current user’s position to the selected des-
tination is displayed on the 2D mini map and the direction is shown in

the 3D environment with AR objects.

Actors

User

Basic Actions

1. The system calculates the optimal route from the user’s current

location to the selected destination.

2. The system updates the path on the 2D mini map with the newly

calculated path.

3. The system updates the direction in the 3D area using AR objects

with the newly calculated path.

o8

6.3 User Interface (UI) Design

As the app uses AR to navigate a user, the important part of the app is the camera image and
AR objects in the environment. Therefore, there should not be any contents on the screen that

distract the actual navigation.

As described in "Start the App" use case description, the app waits for a user to scan a marker
when the user starts the app. It should display a camera image but there should also be a
description of what the user has to do, otherwise user does not know what the next step is after
launching the app. A text that asks the user to scan a marker is placed in the middle of the

screen to avoid the confusion.

After a marker is scanned, a 2D mini map and a button to display a list of destinations should be
placed on the screen as the requirement FR 1.3 and FR 1.6 define. These must be displayed all
the time so the user can check the current location and change the destination anytime. These
are placed at the top of the screen so these do not disturb the actual navigation and the user
does not touch it mistakenly during the navigation. To meet the requirement FR 1.7, the list of

destinations is displayed as a drop-down list when the user click the button.

Figure [6.2] shows the wireframes of the UI design for the application. The grey areas in the

wireframes are where the camera images and AR objects are shown.

6.4 Technology Choices

There are many Software Development Kits (SDKs) for developing AR mobile apps available.
Vuforia Engine (PTC 2020) is the most popular AR SDK released by PTC. It has been used
by leading companies, like LEGO and Mercedes. Vuforia Engine supports AR app development
for Android, iOS, Lumin, and UWP devices. It is free to use for development but a license
is required when the product is deployed. Vuforia offers a variety of features including object
detection, virtual buttons and occlusion management. Vuforia Engine uses SLAM and other
technologies from ARKit and ARCore. Using Vuforia Engine, applications can be developed on
Unity, Visual Studio, Android Studio and Xcode.

ARCore (Google 2020) is another popular SDK for developing AR applications released by

Google. It is free and it supports both Android and iOS devices. Main concepts of ARCore is

99

2D mini map 2D mini map | | DESTINATIONS
ROOM A
ROOME
ROOM C

Please scan a marker

(a) Before scanning a marker (b) After scanning a marker (c) When displaying a list of

destinations

Figure 6.2: Wireframes of the Ul design

that it allows the system to track the device position using SLAM and IMU, detect the size and
location of all type of surfaces, and estimate the environment’s lighting condition. It also allows
the system to track objects and users to interact with virtual objects in the environment. There
is a feature called "Augmented Image", which responds to specific 2D images. This feature can
be used for marker detection for this project. It has been used to develop various apps, such
as lifestyle, game, and real-estate apps. It can be used on Android Studio, Unity, Xcode and

Unreal Engine.

ARKit (Apple Inc. 2021) is an open source AR SDK for i0S devices created by Apple. It supports
devices with iOS 11.0 or later. Applications can be developed with Xcode. There are many
features, including multiple face tracking, visualising the shape of the physical environment and
motion capture. ARKit uses visual-inertial odometry for motion tracking. It uses a combination
of information from the device’s motion sensing hardware and the information from the device’s
camera. It recognizes notable features in the environment, track differences in the positions of
those features and compare it with motion sensing data. It provides a precise device position

and motion.

60

ARToolKit (Kato & Billinghurst 1999) is another open source AR SDK. As mentioned in section
[2.2.1] ARToolKit is popular and useful for many applications but there are disadvantages, such
as high false positive and inter-marker confusion rates, high sensitivity to lighting conditions
and large library size. It runs on Linux, Mac OS X, and Windows and there are plug-ins for
Unity and OpenSceneGraph. The plugin for Unity supports on OS X Windows, Android and

i0S. It supports Image detection but does not support motion tracking.

MAXST (MAXST 2019) is a Korean technology company established in 2010 that has focused on
AR. The AR SDK launched by MAXST supports various trackings, such as QR codes, barcodes,
markers, images, objects, planes and feature points. The SLAM provided by this SDK integrates
the information from camera image with data of IMU sensor as ARCore does. This enables
tracking featureless environments, fast movements and on-the-spot rotation. Applications can
be developed on Unity, Android Studio and Xcode for iOS and Android devices and Smart
glasses. There is a free license for a non-commercial app and paid licenses including SDK
updates. It has been used for developing entertainment, business, education, social, tourism and

healthcare apps.

Wikitude AR SDK is another powerful AR developing platform that has been used by a huge
community of developers to create more than 40,000 apps for variety of industries, such as the
Jack Daniel’s AR experience and Nissan LEAF AR app (Wikitude 2021b). It supports not
only tracking as other SDK do but also supports tracking multiple images, objects and the
environment at the same time. It also supports cloud recognition, which enables the apps to
recognize up to 100.000 thousand images. Wikitude provides SDKs, third-party plug-ins and
tools for various platforms to develop AR apps. Wikitude AR SDK includes SLAM technology
which integrates ARKit and ARCore on top of Wikitude’s SLAM engine. There are only paid

licenses but a free trial is available for a short period.

Table shows the summary of the AR SDKs introduced above to compare these in terms of
costs, supported devices, development platforms and functionalities, image detection and motion

tracking, that are required for the AR indoor navigation app.

Unity (Unity Technologies 2021a) is a platform for developing 2D, 3D and VR games and apps
available for Windows, Mac and Linux. It has been used by many leading companies to develop
applications for gaming, automotive, film and architecture. One of the advantages of Unity is

that there’s a large global community supports.

61

Name Cost Supported Devices | Development Platform | Image Motion
Detection | Tracking
Vuforia | Free e Android e Unity 0 0
/Paid e i0OS e Visual Studio
e Lumin e Android Studio
e UWP e Xcode
ARCore | Free e Android e Unity 0 0
e iOS e Android Studio
e Xcode
e Unreal Engine
ARKit Free iOS Xcode O O
ARToolKit | Free o Linux e Unity O X
e Mac OS X e OpenSceneGraph
o Windows
e Android
e iOS
MAXST | Free e Android o Unity © ©
/Paid . i0S e Android Studio
e Smart e Xcode
Glasses
Wikitude Paid o Android e Unity O O
e iOS e Android Studio
e Smart e Xcode
Glasses e Visual Studio and
e UWP others

Table 6.1: Summary of AR SDKs

62

There is a framework called AR Foundation which let developers to build AR applications for
multiple mobile and wearable devices in Unity (Unity Technologies 20215). AR Foundation
includes core features from ARKit, ARCore, Magic Leap, and HoloLens and unique features
from Unity. It allows developers to switch AR devices without rebuilding apps. Supported

features are shown in figure 6.3

Unity’s AR Foundation
Supported Features

Functionality ARCore ARKit Magic Leap HoloLens
Device tracking v v v v'
Plane tracking v v v

Paint clouds v v

Anchors Vv v v vy
Light estimation v v

Environment probes v v

Face tracking v v

Meshing v v
2D Image tracking v v

Raycast v v v

Pass-through video v v

Session management v v v v'

Figure 6.3: AR Foundation supported features

Using AR Foundation, the app can be developed for different platforms at the same time with
additional Unity features. Even though the app for this project is developed for Android devices,
it is easy to change the target devices to other operation systems like iOS using AR Foundation.
The app can help more people on university campuses if the app is made for multiple operation
systems. Unity’s well-organized documentation and dynamic community of developers would
be a great support for me to create my first AR application. Unity includes functions to create

navigation mesh and find an optimal path using A* search algorithm, which is very useful for

63

this project. Also, I have some previous experience with developing a game with Unity. From

these reasons, I chose to use AR Foundation in Unity to develop an application for this project.

64

Chapter 7

Implementation

7.1 Introduction

This chapter describes how the final application was implemented in detail including different
approaches used for the implementation and challenges and problems encountered during the
development process. First, the main implementation was carried out to cover the essential
requirements. There were six stages for the main implementation: setting up, UI, marker
scanning, tracking, pathfinding and AR navigation. These development stages were carried out
sequentially and the system was tested at the end of each stage. After completing the main
implementation, the additional implementation was carried out to meet some of the desirable
requirements. The following sections give a detail description of the implementation. Due to
the pandemic, the application was developed in a student accommodation instead of campus

buildings.

7.2 Main Implementation

7.2.1 Setting up

As mentioned in section the system was developed using AR Foundation on Unity. C+#
is used for scripting in Unity and codes are edited using Visual Studio 2019. AR Foundation
and ARCore XR Plugin were first installed to enable the construction of the AR application on

Unity. After that, an AR Session and an AR Session Origin were added to the scene. The AR

65

Session enables AR experience and tracks features in its environment. The AR Session Origin
is used to transform trackable features in the environment into their final position, orientation
and scale in the Unity Scene. The scale of the AR Session Origin for this application is set
to 1 so the data coming from the device will not be scaled, which means that 1 unit in the
unity space represents 1 meter in the real world. The AR Pose Driver drives the local position
and orientation of the parent Game Object according to the device’s tracking information. It
is attached to the AR Camera so it can drives the camera’s position and orientation according
to the device’s movement. Minimum API Level is set to Android 7.0 'Nougat’ (API Level 24)
as it is the minimum requirement for ARCore (Google 2021a). The default orientation is set to
Portrait to disable the auto orientation when the device is rotated. The deployment target for
this project is set to Android and the application is tested on my own Android device. After
setting these up, the application supports AR and displays a camera image on the screen when
the app is launched, which covers FR 1.1. Git and GitHub were used for version control. The

summary of the development environments for this project is shown in table [7.1]

Operating System Windows 10
Development Platform Unity 2020.2.1
Programming Language C#
Integrated Development Environment (IDE) | Visual Studio 2019 16.9.4
Packages AR Foundation 4.1.7

ARCore XR Plugin 4.1.7
Testing Device Motorola Moto G8 Power Lite
Version Control Git and GitHub

Table 7.1: Summary of the development environments

7.2.2 Ul

To display UI contents on the device screen, a canvas was added to the scene. The render mode
of the canvas is set to "Screen Space - Overlay" so that the canvas automatically resizes to
match the device screen when it is resized or changes the resolution. The Ul scale mode is set
to "Constant Pixel Size" to avoid the components being too small or too big for the devices
with small or large screen sizes. All the Ul contents were added on the canvas so that these are

displayed on the screen.

66

When the app is launched, a text that asks a user to scan a marker is displayed using a text
component and it is removed when a marker is scanned. After the user scans the first marker,
the app displays a 2D map and a button to show a list of destinations as FR 1.3 and FR 1.6
define. These Ul components should not be shown at the beginning because the app cannot get
the user’s location until a user scans a marker. The app cannot display the right part of the map
and cannot navigate the user to a destination even though the user selects a destination without
knowing the user’s current location. Therefore, these components are deactivated initially and

set active when the app recognizes the first marker.

A floor plan, which can be found in Appendix B, is used as a 2D mini map for the app. As
FR 1.5 defines, the mini map should be updated in real time according to the device movement
so the floor plan cannot be displayed as a plain image on the screen. It was first uploaded as
an image and applied to a plane object as a material. The plane was scaled so the size of the
map is same as the size of the real world. To display the mini map on the screen, a raw image
component was added on the canvas. The raw image component can display any type of texture.
A Render Texture was created to be displayed in the raw image component. It is a type of a
texture in Unity that can be created and updated at run time using image data taken from a
camera. A camera was placed above the floor plan in the scene and rotated so that it points at
the floor plan and get the floor plan as image data. To meet FR 1.4, a sphere was also added
to the scene right below the camera on the map to indicate the position of the user. It was
attached to the camera so that it follows the camera movement and appears in the middle of
the mini map all the time. The Render Texture was assigned to the camera as a target texture
so it takes the image data from the camera as a texture and the texture was applied to the raw
image component on the canvas. It allows the app to display the floor plan on the screen and

update it in real time as the camera moves.

A drop-down component was added to show the list of destinations on the canvas and to allow
the user to select a destination from the list. It will display a list of destinations when the user
taps the button. No destination should be selected when the app is first launched but Unity
does not support a drop-down without selected option. To solve the problem, the first option is

set as "DESTINATIONS" and it is removed from the list once the user selects a destination.

The initial text is displayed in the middle, 2D mini map is placed at the top left corner and a

button for displaying the destination list is placed at the top right corner of the device screen as

67

designed in figure [6.2] All of the UI components are anchored to the canvas so that these stay
inside the screen when devices with different screen sizes are used. The figure shows how the

components are anchored.

Please scan a marker

Figure 7.1: Ul

The initial text is anchored to the centre of the canvas so it stays in the middle of the screen.
If the mini map and the drop-down is anchored at the top corners and set to fixed sizes, these
components will be too small for large screens and too big for small screens. These components
can overlap with each other if the width of the screen is smaller than the total width of these
components. To avoid these, each corner of the components are anchored to different positions
on the canvas. The top left corner of the mini map is anchored at the top left corner, the top
right corner is anchored to a point 40% from the left edge and the bottom left corner is anchored
to a point 20% from the top edge of the canvas so it stays at the top left corner and scale with
the screen size. Similarly to the mini map, the right corners of the drop-down are anchored at
the top right corner and left corners are anchored to a point 50% from the right side. Fixed

height is set to the drop-down so it only scales the width. Offsets are set as the orange arrows

68

shown in figure so there are gaps between the drop-down and the edges of the screen.

7.2.3 Marker Scanning

To meet the FR 1.2, the system must be able to recognize markers. AR Foundation includes
Augmented Image API which enables AR apps to detect and track 2D images in the user’s
environment (Google 2021b). In this project, images are used as markers using the API. One
database can contain 1000 reference images which means that the system can recognize 1000

different images in the environment. The images can be fixed in place or moving.

According to Google (2021b), the images must:

e Fill at least 25% of the camera frame to be initially detected.
e Be flat (for example, not wrinkled or wrapped around a bottle).

e Be in clear view of the camera. They should not be partially obscured, viewed at a highly

oblique angle, or viewed when the camera is moving too fast due to motion blur.

Images with sufficient resolution with many unique features should be used. There is a tool called
"arcoreimg" in the ARCore SDK which provides a quality of an image with a score between 0

and 100. It is recommended to use images with a score of at least 75.

For this application, some free images were downloaded from Pixabay (2021) and the quality of

the images were checked with arcoreimg. Some results are shown in figure [7.2]

The images with a score of 75 or above were chosen as markers for the application. A Reference
Image Library was added to the project and the chosen images are added to the library. An
AR Tracked Image Manager was added to the AR Session which enables the application to
detect the images in the library. This manager creates an object for each detected image with
the information in the reference library. By subscribing to the manager’s event function called
"trackedImagesChanged", the app can be notified when the images are added, updated and
removed and get information about the images. When an image is added for the first time,
the initial text is removed from the screen and the mini map and drop-down on the canvas are

activated.

To meet the FR 1.16, the user’s current location should be updated every time a marker is

scanned with the device. To do this, the app should identify the image, get the user’s current

69

(c) Score: 75 (d) Score: 100

Figure 7.2: Image quality scores given by arcoreimg tool

position and orientation from the image data and update the position and rotation of the mini
map camera (the camera above the floor plan) so it displays the right part of the map with the

right angle and the pointer on the map is at the user’s location.

The AR Tracked Image Manager creates an object and adds it to the scene when the image
is detected for the first time and the image will be tracked all of the time regardless of the
visibility of the image until it is removed. To determine the visibility of the image, the image’s
tracking state is checked. The state is likely to be "Tracking" when it is visible and "Limited"
when it is invisible. Repositioning of the user’s current location should be done only when the
image becomes visible so the state of the detected image should be "Tracking". After checking
the image’s tracking state, the information of the image should be retrieved to get the user’s
current location. Unique names are given to the images in the reference library so that the
names of the images