
AR INDOOR NAVIGATION FOR CAMPUS BUILDINGS

by

RINA FUMOTO
URN: 6498806

A dissertation submitted in partial fulfilment of the
requirements for the award of

BACHELOR OF SCIENCE IN COMPUTER SCIENCE

May 2021

Department of Computer Science
University of Surrey
Guildford GU2 7XH

Supervised by: Andrew Crossan

I declare that this dissertation is my own work and that the work of others is acknowledged and
indicated by explicit references.

Rina Fumoto
May 2021

© Copyright Rina Fumoto, May 2021

Abstract

Nowadays, smartphones have been essential tools not only for communications but also for

entertainment, business and many other purposes. Navigation apps are one of the essential

tools for smartphone users. There are many applications available for outdoor navigation but

not many indoor navigation systems are available. It is due to the difficulty of positioning and

tracking in indoor environments as GPS signal weakens in these environments. There are various

systems for indoor tracking currently available but there is no perfect solution in terms of its

precision, complexity and cost.

This project investigates approaches to improve the performance of current indoor navigation

techniques using Augmented Reality. Augmented Reality can not only help indoor positioning

and tracking but also the navigation itself. While maps and geolocation apps can be used for

navigation, these apps only provide partial information about the environment. Using Aug-

mented Reality, virtual objects appear in the real world environment to navigate users which

makes it easier for people to follow.

The usability of Augmented Reality for indoor navigation system will be demonstrated by devel-

oping a proof of concept application that can be used for navigating people in complex campus

buildings. The implemented application provides reasonable navigation performance but there

are some improvements to be made for device tracking.

3

Acknowledgements

I would like to take this opportunity to thank the people who have supported or helped me not

only with this project but also with my degree over the last four years.

I would like to thank my supervisor, Dr. Andrew Crossan, for his guidance and supervision with

this project, as well as the staffs at the University of Surrey and the Hong Kong Polytechnic

University for their work, help and support during my university years.

Finally, a big thanks to all my friends for all their support and encouragement.

4

Contents

1 Introduction 15

1.1 Overview . 15

1.2 Aims & Objectives . 16

1.3 Structure of the Report . 17

2 Literature Review 19

2.1 Introduction . 19

2.2 Augmented Reality . 19

2.2.1 Marker-based Augmented Reality . 20

2.2.2 Markerless Augmented Reality . 22

2.2.3 AR Displays . 23

2.2.3.1 Head Mounted Displays (HMD) 23

2.2.3.2 Handheld Displays . 26

2.2.3.3 Spatial Augmented Reality (SAR) 27

2.3 Navigation . 28

2.3.1 Positioning and Tracking . 28

2.3.2 Pathfinding . 32

2.3.2.1 Graph Generation . 32

2.3.2.2 Route Calculation . 33

5

2.3.3 Graphical Instruction . 37

2.4 Existing Works . 38

2.5 Conclusion . 39

3 Planning 40

3.1 Introduction . 40

3.2 System Development Life Cycle (SDLC) . 40

3.3 Software Development Life Cycle Methodologies 41

3.3.1 Heavyweight Methods . 41

3.3.2 Lightweight Methods . 43

3.4 Project Plan . 44

4 System Analysis 46

4.1 Introduction . 46

4.2 AR . 46

4.3 Navigation . 47

5 System Requirements and Specifications 49

5.1 Introduction . 49

5.1.1 Purpose . 49

5.1.2 Scope . 49

5.1.3 Overview . 50

5.2 Overall Description . 50

5.2.1 Product functions . 50

5.2.2 User characteristics . 50

5.2.3 Constraints . 50

5.2.4 Assumptions and Dependencies . 51

6

5.3 Specific Requirements . 51

5.3.1 Functional Requirements . 51

5.3.2 Non-functional Requirements . 52

6 System Design 54

6.1 Introduction . 54

6.2 Use Case Model . 54

6.3 User Interface (UI) Design . 59

6.4 Technology Choices . 59

7 Implementation 65

7.1 Introduction . 65

7.2 Main Implementation . 65

7.2.1 Setting up . 65

7.2.2 UI . 66

7.2.3 Marker Scanning . 69

7.2.4 Tracking . 71

7.2.5 Pathfinding . 73

7.2.6 AR Navigation . 76

7.3 Additional Implementation . 78

7.3.1 Distance Calculation . 78

7.3.2 Zoom . 79

7.3.3 Navigation Line . 81

8 Testing/Validation 82

8.1 Introduction . 82

8.2 Performance Testing . 82

7

8.3 Requirements Testing . 85

8.3.1 Functional Requirements . 86

8.3.2 Non-functional Requirements . 99

8.4 Evaluation . 101

9 Legal, Social, Ethical and Professional issues 102

9.1 Introduction . 102

9.2 Legal issues . 102

9.3 Social issues . 103

9.4 Ethical issues . 104

9.5 Professional issues . 104

10 Conclusions and Future Work 105

10.1 Overview . 105

10.2 Conclusions . 105

10.3 Future Work . 107

10.4 Academic Contributions . 108

10.5 Personal Development . 108

10.6 Final Statement . 109

A Gantt Chart 110

B Floor Plan 112

C Screenshots of the Performance Testing without Markers 113

D Screenshots of the Performance Testing with Markers 114

E SAGE Form 116

8

List of Figures

2.1 Examples of the square shaped markers . 21

2.2 Other types of markers . 22

2.3 First HMD . 24

2.4 Examples of OHMDs . 24

2.5 Smart Glasses . 25

2.6 RETISSA Display II . 25

2.7 The minimization of handheld devices for AR . 26

2.8 SAR . 27

2.9 RFID system components . 29

2.10 RF localization hierarchy . 30

2.11 Waypoint graph and navigation mesh comparison 33

2.12 Illustration of Dijkstra’s algorithm . 34

2.13 Illustration of path search algorithms on a grid graph 36

2.14 Route visualization on 2D maps . 37

2.15 Route visualization of existing systems . 38

3.1 The waterfall model . 42

3.2 The V model . 43

6.1 Use case diagram . 55

9

6.2 Wireframes of the UI design . 60

6.3 AR Foundation supported features . 63

7.1 UI . 68

7.2 Image quality scores given by arcoreimg tool . 70

7.3 Walkable area represented with planes . 74

7.4 Resulted navigation mesh . 74

7.5 3D objects created with Blender . 76

8.1 Testing route . 83

8.2 Tracking without markers . 84

8.3 Screenshots at the blue number 3, 5 and the red number 5 84

8.4 Tracking with markers . 85

10

List of Tables

2.1 Advantages and limitations of indoor positioning systems. 31

3.1 Project timetable . 45

6.1 Summary of AR SDKs . 62

7.1 Summary of the development environments . 66

11

Abbreviations

API Application Programming Interface

ACM Association for Computing Machinery

AR Augmented Reality

BCS British Computer Society

CMA Computer Misuse Act

DPA Data Protection Act

GPS Global Positioning System

HMD Head Mounted Display

HOM Hoffman Marker System

HIT Human Interface Technology

ID Identification

IPS Indoor Positioning System

IMU Inertial Measurement Unit

IGD Institut Graphische Datenverarbeitung

IEEE Institute of Electrical and Electronics Engineers

JAD Joint Application Design

JRP Joint Requirement Planning

OHMD Optical Head Mounted Display

PC Personal Computer

QR Quick Response

RF Radio Frequency

RFID Radio Frequency Identification

RAD Rapid Application Development

RAID Risk, Assumptions, Issues, Dependencies

12

SAGE Self-Assessment for Governance and Ethics

SCR Siemens Corporate Research

SLAM Simultaneous Localization and Mapping

SDK Software Development Kit

SAR Spatial Augmented Reality

SDLC System Development Life Cycle

3D Three-Dimensional

2D Two-Dimensional

UMPC Ultra-Mobile Personal Computer

UWB Ultra-Wide Band

UML Unified Modeling Language

UWP Universal Windows Platform

UI User Interface

V & V Verification and Validation

VR Virtual Reality

VRD Virtual Retinal Display

WLAN Wireless Local Area Network

13

Statement of Ethics

This project does not involve any human participants, human data or tissue, or animal research

so a full ethical review is not required. However, the legal, social, ethical and professional issues

have still been considered and discussed during this project. This project does not have any

intentions to impose harm. For example, it does not include any practices that can damage

the reputation of the University, disrespect the welfare and interests of the wider community or

damage items of cultural value or the natural environment. This project has been carried out

according to the relevant code of conducts.

14

Chapter 1

Introduction

1.1 Overview

There are more than 2.7 billion smartphone users around the world and the most popular

navigation app, Google Maps, reached 5 billion downloads on the Play Store in 2019 (Khoury

2019). However, a study shows GPS-based navigation system users performed worse than direct

experience (Ishikawa, Fujiwara, Imai & Okabe 2008). This was a result of the user’s focus on

the screen which interfered with their attention to the routes and surrounding area.

This problem can be solved with Augmented Reality (AR). When AR is used for a navigation

system, the navigation and surroundings are displayed on the same screen which makes the

guidance more effective and convenient. This also helps people who have difficulty with reading

maps and finding directions (Chen, Xie, Lin, Wang & Lin 2020).

There are some existing AR navigation apps, like Google Live View (Inman 2019) and AC Tourist

(Augmented City 2021) but most of the major GPS-based navigation apps do not support indoor

environments due to the complexity of positioning and tracking of user’s location in indoor

environments, where GPS signal weakens. Without navigation apps, people struggle to locate

their destinations, especially in huge buildings.

There are many approaches to improve the performance of indoor navigation using AR. This

dissertation will investigate different technologies that can be used for AR indoor navigation

system. The findings of the investigation will be used for implementing an AR indoor navigation

app for university campus buildings to help students and staff to find their destinations. This app

15

will help freshers and returning students at the beginning of semesters to find their classrooms

in complex buildings with lots of rooms. It can also be used by applicants to look around inside

buildings on open day. The accuracy of the navigation is important as well as the installation

effort and cost because it is difficult to install equipment into numerous buildings on campuses

and spend a lot of money on navigation systems that are convenient but not necessary. Also, the

implemented system should be easy to use as there is a variety of people on campuses who are

not necessarily familiar with technologies. The findings from the development can be applied

to different use cases, such as indoor navigation systems in airports, museums and shopping

centres.

1.2 Aims & Objectives

The overall aim of this research project is to explore various approaches for indoor positioning

and tracking using AR and design and implement an AR indoor navigation mobile application

for campus buildings, which can be used by students, staff and visitors.

There are four main objectives for this project. The following is a list of the objectives with

some details:

• Review literature that is relevant to this project.

Conduct in-depth research into Augmented Reality, indoor positioning and tracking, pathfind-

ing and other technologies that can be used for AR indoor navigation system and review

existing solutions. This objective can be achieved by completing the literature review.

• Analyse current solutions and define requirements for this project.

Compare different techniques found from literature to identify the best approach for imple-

menting the AR indoor navigation system for campus buildings and define requirements

for the application. This objective can be achieved by identifying the approach for the

implementation and defining the system requirements and specifications.

• Develop a proof of concept to demonstrate the feasibility and identify potential issues that

might interfere with the indoor navigation system using AR.

Verify the idea of using AR for indoor navigation and demonstrate its functionality by

presenting a proof of concept. This objective can be achieved by designing the function-

16

alities and user interface of the new application for campus buildings according to the

defined requirements, implementing the new application that navigates people in campus

buildings to a selected destination based on the design and testing the application against

the requirements.

• Evaluate the new implemented app and provide recommendations for future works.

Evaluate findings from implementation and testing and recommend improvements that

can be made for the future. This objective can be achieved by providing the conclusions

about the success of the project and recommendations for future works.

1.3 Structure of the Report

This dissertation includes the following chapters. The structure of the report is also reflecting

the development process.

Chapter 1 Introduction

This chapter includes the overview of the project topic, aims and objectives of this project

and the structure of this dissertation.

Chapter 2 Literature Review

This chapter will review relevant literature, explore different techniques and identify some

existing solutions that relate to AR indoor navigation. In-depth research into different

types of AR, displays used for AR applications, current approaches used for indoor posi-

tioning and tracking and some pathfinding algorithms will be conducted in this chapter.

Some existing works for AR indoor navigation will be introduced at the end of this chapter.

Chapter 3 Planning

The System Development Life Cycle and some popular methodologies that are used by

the software industry will be mentioned in this chapter. A methodology for this project

will be chosen and the timeline for this project will be planned to ensure the project will

be completed successfully in time.

Chapter 4 System Analysis

17

This chapter will analyse different technologies that have been provided by the literature

review. The best approaches for this project will be identified to define the requirements

and specifications for developing the new application.

Chapter 5 System Requirements and Specifications

This chapter will provide detailed requirements and specifications required to successfully

complete the AR indoor navigation app. The overview, functions and constraints of the

system will be provided. The specific requirements for the system will be provided in the

last part of this chapter. This part includes both functional and non-functional require-

ments.

Chapter 6 System Design

This chapter will build up a design for the application according to the system requirements

and specifications defined in the previous chapter. A use case diagram and UI will be

designed and different libraries and development tools will be explored and compared to

identify the suitable ones for this project.

Chapter 7 Implementation

This chapter will describe how the final application was implemented in detail. Different

approaches taken for the implementation and challenges and problems encountered during

the development process will be explained.

Chapter 8 Testing/Validation

This chapter will provide descriptions of how the implemented system was tested and the

results gained from the testing. The testing results will be evaluated at the end of this

chapter.

Chapter 9 Legal, Social, Ethical and Professional issues

In this chapter, the legal, social, ethical and professional considerations of the current

project will be discussed to ensure that the project is carried out according to the relevant

code of conducts.

Chapter 10 Conclusions and Future Work

This chapter will provide the overall project conclusions, as well as recommendations for

future development.

18

Chapter 2

Literature Review

2.1 Introduction

This chapter will review relevant literature, explore different techniques and identify some ex-

isting solutions that have been used for AR indoor navigation. This chapter will first look at

different types of AR and displays used for AR applications. Then, it will look into current

approaches used for indoor positioning and tracking and some pathfinding algorithms.

2.2 Augmented Reality

Augmented Reality (AR) is a technology that combines the real world environment and a com-

puter generated virtual information in real time. Using AR, the virtual objects and real objects

coexist in three dimensions. It is based on techniques developed in Virtual Reality (VR). The

fundamental difference between AR and VR is the environment. VR uses a computer-generated

virtual environment but AR uses the real environment extended with virtual information from

the system (Lee 2012).

The beginning of the Augmented Reality is the first head-mounted display system that Ivan

Sutherland developed in 1968 (Sutherland 1968). In 1990, the term "Augmented Reality" was

coined by Boeing researcher, Thomas Caudell (Thomas & David 1992). Since then, it has been

used for medical visualization, entertainment, advertising, maintenance and repair, annotation,

robot path planning and so on (Furht 2011).

AR uses different methods of computer vision to understand the real environment from the

19

information from cameras and render virtual objects in it. It first detects markers, images

or interest points using a camera (Furht 2011). Then, it tracks the camera movement using

feature detection, edge detection, or other image processing methods. After the system makes

connection between the 2D image and 3D world frame, it projects the 3D coordinates of the

features into the 2D image coordinates to find the camera position and orientation. Finally, it

reconstructs a real world coordinate system using the data.

AR can make navigation systems more useful. AR combines a real environment with virtual

content so a user does not only focus on a map or a device display but also pays attention to the

surrounding area while moving towards the destination. AR is not only useful for navigation

using 3D objects but also useful for positioning and tracking processes. While using AR image

processing methods, a system can identify the device position and track the device movement.

This is very useful, especially for indoor navigation. More details about indoor positioning and

tracking using AR will be explained in the following section.

Different types of AR are described in the following subsections. There are mainly two types of

AR, marker-based AR and markerless AR.

2.2.1 Marker-based Augmented Reality

Many AR systems use markers for motion tracking and position and orientation estimation

(Zhang, Fronz & Navab 2002). This type of AR first captures a marker with a camera. It then

calculates the 3D coordinates of the marker and puts the corresponding virtual object on it

(Furht 2011). Various types of markers are used for AR systems.

The most common type of marker is a square shaped vision marker as shown in figure 2.1

(Zhang et al. 2002). These markers are commonly used because the square shape provides four

prominent points that can be used to obtain the position and orientation. (Garrido-Jurado,

Muñoz-Salinas, Madrid-Cuevas & Marín-Jiménez 2014) The detection process of these markers

are the following. First, the system looks for an image that has a black square border. Then, it

checks the inner region of the marker to identify it using a binary code or an arbitrary pattern

such as an image. If it is verified as a legitimate marker, the system gets the marker ID and its

corner location (Fiala 2005b).

One of the most popular square shape markers is ARToolKit (Kato & Billinghurst 1999), which

is an open source project developed by Hirokazu Kato and Mark Billinghurst in 1999. It is

20

(a) ARToolKit (b) ARTag (c) ARToolKitPlus (d) Matrix

(e) Binary Square (f) BinARyID (g) HOM (h) IGD (i) SCR

Figure 2.1: Examples of the square shaped markers

popular because it is simple, relatively robust, and freely available (Fiala 2005a). It is useful for

many applications, but there are some disadvantages. First, it uses a correlation to verify and

identify markers, causing high false positive and inter-marker confusion rates. Second, it is very

sensitive to lightning conditions. Third, it requires a large library size to store unique markers

and processing time to correlate with all marker prototypes in the library.

ARTag (Fiala 2005a) is another marker system inspired by ARToolKit. It uses an edge based

approach instead of a template based approach used in ARToolKit so it is not as sensitive to

lightning conditions as ARToolKit. It can even cope with broken markers and it is faster than

ARToolKit because it does not need to compare with prototypes in the library (Hirzer 2008).

ARToolKitPlus (Wagner & Schmalstieg 2007) is an improved version of ARToolKit inspired by

ARTag targeted at mobile devices.

There are other square shapes markers, such as Matrix (Rekimoto 1998), BinARyID (Flohr

& Fischer 2007), Binary Square Marker (Boulanger 2004), Hoffman Marker System (HOM),

Institut Graphische Datenverarbeitung (IGD) and Siemens Corporate Research (SCR) (Zhang

et al. 2002).

There are other types of markers shown in figure 2.2. Bar Codes like Quick Response (QR)

Code, Data Matrix and Maxicode can also be used for AR systems but these do not work

as well as the other markers introduced above (Fiala 2009). These are useful for encoding

21

(a) QR Code (b) Data Matrix (c) Maxicode

(d) Cybercode (e) Visual code (f) reacTIVision

Figure 2.2: Other types of markers

information but it does not work well with a large field of view and does not provide enough

image points for calculating position and orientation in a 3D space. Cybercode (Rekimoto &

Ayatsuka 2000, Ayatsuka & Rekimoto 2006), Visual code (Rohs & Gfeller 2004, Rohs 2005)

and reacTIVision (Kaltenbrunner & Bencina 2007, reacTIVision 1.5.1 n.d.) are based on blob

detection. 2D images (Wikitude 2020) and 3D objects (Wikitude 2021a) can also work as

markers for AR systems.

AR markers can be used to identify the device position for navigation systems in campus build-

ings. Any markers mentioned in this section can be easily installed in campus buildings. If the

system knows the floor plans of the buildings and the locations of the markers, it can identify

the user’s location when the system detects a marker with a camera. The positioning can only

be done when a marker is visible in the camera frame so it is not useful for tracking the device

movement. To enable device tracking with markers, enormous numbers of markers are required

so that at least one marker is in the camera view.

2.2.2 Markerless Augmented Reality

Markerless AR is an AR system that does not require markers as the term indicates. It scans

the surrounding environment to place virtual objects rather than scanning markers so it does

not need a prior knowledge of the environment (Schechter 2020). It is used in various industries,

for example, there is an interior design tool called "Myty" (Arty 2017). It detects a flat surface

22

in the surrounding environment and allows users to place furniture on it. Another example of

markerless AR tool is "TIME Immersive app" (Time 2019). It allows a user to place an AR

content on a flat surface, view the content from different perspective by moving the device, and

interact with it.

The main steps of markerless AR system are the following (Furht 2011, Ziegler 2009). It first

detects natural features in the environment using edge, corner detection and texture from images

or objects (Jumarlis & Mirfan 2018). Once the features have been detected, it searches for

correspondences between the detected features and features in the database to calculate the

camera’s position and orientation. After calculating the camera’s position and orientation, it

uses the result to reconstruct the 3D structure.

3D models of campus buildings can be built by scanning the natural features of the buildings

using AR. The 3D models can then be used for positioning the user location by comparing

the detected features with the features in the model. This technology can also be used for

tracking a device by comparing the features in the previous frame and the current frame. From

the difference between the feature points in these frames, the movement of the device can be

calculated. An indoor navigation system can be implemented using these techniques without

GPS signals.

2.2.3 AR Displays

There are various displays that are available for AR. AR displays can be categorised into three

types: Head-mounted, Handheld and Spatial.

2.2.3.1 Head Mounted Displays (HMD)

Head mounted displays (HMDs) are image display units that are mounted on the head (Shibata

2002). The first HMD was developed in 1968, which is shown in figure 2.3 (Sutherland 1968).

It has been used by militaries, engineers and scientists (Klepper 2007). It can also be used for

games, VRs and personal theater systems (Shibata 2002).

Optical HMD (OHMD) uses a semi-transparent surface to allow users to see both a real envi-

ronment and artificial images (Cutolo, Cattari, Fontana & Ferrari 2020). Several OHMDs are

commercially available, such as Magic Leap 1 (Magic Leap 2021), HoloLens 2 (Microsoft 2021)

23

Figure 2.3: First HMD

and Meta 2 (Schenker Technologies GmbH n.d.) as shown in figure 2.4

(a) Magic Leap 1 (b) HoloLens 2 (c) Meta 2

Figure 2.4: Examples of OHMDs

Using OHMD, AR smart glasses are developed. Smart glasses are computer devices that can be

worn like regular glasses (Rauschnabel, Brem & Ro 2015). Smart glasses contains sensors and

processing capabilities, which allow users to interact with the physical world with augmented

information in real-time (Lee & Hui 2018). Google Glass is the first smart glasses set that

became commercially available. Currently, several AR smart glasses are available for multiple

purposes, such as manufacturing, logistics, healthcare, entertainment and education (figure 2.5)

(Google 2021c, Epson 2021b).

There is another HMD that uses a different display technology called "Virtual Retinal Display

(VRD)". It projects a beam of light directly onto the retina of the eye (Silva, Oliveira & Giraldi

2003). It was invented at the University of Washington in the Human Interface Technology Lab

(HIT) in 1991 (HITLab n.d.). An example of AR smart glasses using VRD is RETISSA Display

II developed by QD Laser, a Japanese laser maker, as shown in figure 2.6 (QD Laser 2020).

24

(a) Google Glass (b) Epson Moverio (Epson 2021a)

Figure 2.5: Smart Glasses

Figure 2.6: RETISSA Display II

The relatively new wearable devices that are used for AR is AR Smart lenses. The first prototype

of the electronic contact lenses were presented by researchers from the University of Washington

in 2009 (Parviz 2009). Sony was granted a patent for smart contact lenses in 2016 (Sako, Iwasaki,

Hayashi, Kon, Nakamura, Onuma & Tange 2016). After 3 years from that, Samsung has been

granted a patent for AR smart contact lenses (Kim, Hwang, Kim, Ahn & Chung 2019). These

lenses includes not only a display but also a camera, antenna and sensor. The sensor can detect

a motion of an eyeball and a blink of an eye. Mojo Vision (Mojo Vision Inc. 2021) is also working

on the AR contact lenses called "Mojo Lens". The CEO of Mojo Vision, Drew Perkins, wore

the Mojo Lens and became the first person to watch a movie with his eyes closed (Martin 2020).

HMDs can be used for AR navigation system as these devices includes elements, such as a

camera, screen and sensor, that are required for displaying AR contents for navigation and

detecting features for positioning and tracking. One of the advantages of using HMDs for AR

navigation system for campus buildings is that users do not need to hold a device in their hand.

Carrying a bag in one hand and holding a device or a map in the other hand on the way to

a lecture room would be uncomfortable for students but if they use HMDs, they can use a

navigation system without using their hands. However, these devices are quite expensive in that

it is difficult for students and staff to afford.

25

2.2.3.2 Handheld Displays

Handheld AR is very popular. It has been used in many fields, such as in education, tourism,

medical science, entertainment and retail. One of the reason why it is popular is because users do

not need to carry extra devices to use AR applications as most people already have smartphones

or tablet PCs. These devices contains features necessary for AR applications, such as a camera,

sensors, display and processors. It is also cheaper than other special displays (Haque, Islam,

Salma, Al Jubair & Weng 2020).

Handheld devices for AR became smaller and smaller having started from backpack with HMD

(figure 2.7 (a)). It was replaced with UMPC (figure 2.7 (b)), then replaced with PDAs (figure

2.7 (c)) and mobile phones (figure 2.7 (d)) (Wagner & Schmalstieg 2009). Recently, smartphones

and tablet PCs are used as AR handheld devices.

Figure 2.7: The minimization of handheld devices for AR

The popularity of handheld AR increased with the appearance of AR games, like Pokemon GO

(Niantic, Inc. 2020). Few years ago, Apple and Google released AR platforms called ARKit

(Apple Inc. 2021) and ARCore (Google 2020) to support AR applications in their operation

systems.

Handheld devices, such as smartphones and tablet devices, contains required features for AR

applications and there are many tools for developing AR applications for these devices so these

26

are suitable devices for this project. Smartphones are owned by most of students and staff so

they can use the newly implemented application by installing it on their smartphones without

purchasing a new device.

2.2.3.3 Spatial Augmented Reality (SAR)

Spatial Augmented Reality (SAR) augments the user’s physical environment with images that

are projected directly onto objects in the user’s environment using digital light projectors as

shown in figure 2.8 (Jin, Seo, Lee, Ahn & Han 2020). It allows the user to better understand the

virtual content. The users not only view digital information but also gain a tactile understanding

by interacting with physical objects. SAR can project images onto not only flat surfaces but

also 3D objects (Thomas, Marner, Smith, Elsayed, Von Itzstein, Klein, Adcock, Eades, Irlitti,

Zucco et al. 2014). Projecting graphics onto an object can change its surface appearance as if

it is made of a different material. For example, it can change the floor to other materials such

as carpet or mossy bogs (Benko, Wilson & Zannier 2014). SAR can also be used for moving

objects using real-time depth capture. SAR can avoid the discomfort of wearing or holding a

device because the device of SAR is separate from users (Jin et al. 2020). SAR has been used

for training, maintenance, on the job assistance, and design (Furht 2011).

Figure 2.8: SAR

27

SAR can also be used for an AR navigation system by detecting user’s movement using real-

time depth capture and displaying AR contents in the environment for navigation. Users are not

required to wear or hold any devices so the navigation can be done very comfortably. However,

it will be a tough work to install equipment, such as projectors and cameras, for the system in

all the campus buildings and getting many of the equipment will be overpriced to purchase just

for the indoor navigation system.

2.3 Navigation

To navigate a user, the system first needs to locate the user’s position. After locating the user’s

position, it calculates an optimal route to the destination. The system also needs to be able

to track a user’s movements. In this section, different approaches for positioning, tracking and

pathfinding are discussed.

2.3.1 Positioning and Tracking

One of the difficulties of developing indoor navigation is the complexity of positioning and

tracking of user’s location in indoor environment. Major outdoor navigation apps use Global

Positioning System (GPS), which cannot be used indoors because the signals from the satellites

are scattered and attenuated by buildings (Koyuncu & Yang 2010). There are various Indoor

Positioning Systems (IPS) that can be used for indoor applications without relying on GPS or

any other satellite technologies.

According to Khoury and Kamat (2009), indoor tracking using Wireless Local Area Networks

(WLAN) covers a large area and it is not blocked by obstacles between the access points and

devices because radio waves can penetrate most of indoor objects. However, interactions with

objects can affect the propagation of energy, which can reduce the range and coverage of the

system. Also, access points have to be placed beforehand to use the system, which requires a lot

of work, especially in a huge area. The accuracy of this technology is not high enough to locate

devices with high-precision.

Teizer, Venugopal and Walia (2008) introduced sensing technology called Ultra-Wide Band

(UWB) that can be used for positioning in three-dimensions. UWB is a wireless technology

used to transmit data using narrow-pulse radio frequency (RF). The utilization of short RF

28

pulses provides precision for the time difference of arrival measurements and avoids multipath

propagation in indoor environments. UWB generates wide bandwidth up to 1,000m, which

covers a large area. UWB technology can be used with other radio technologies without any

interference. UWB has an advantage over other positioning systems, such as GPS and RFID,

because it can provide accurate 3D location values in real time.

Kang and Tesar (2004) stated that Indoor-GPS is a positioning system which uses battery-

operated transmitters and a receiver. A transmitter creates one-way position information and

the relative azimuth and elevation from the transmitter to the receiver with laser and infrared

light. The information is transmitted to the receiver GPS-like signals through a wireless network

connection. Users can determine the position of the receiver with the information from multiple

transmitters. The accuracy increases as the number of the transmitters increases.

Radio Frequency Identification (RFID) is a wireless technology that automatically identifies and

tracks objects by transmitting data using RF (Motamedi, Soltani & Hammad 2013). As RFID

uses RF, it does not require line of sight. RFID system consists of a reader and a tag as shown

in figure 2.9 (Li & Becerik-Gerber 2011). A tag contains data that can be accessed wirelessly.

Figure 2.9: RFID system components

Using RFID for indoor localization is challenging because the changes in signal are difficult to

predict due to radio propagation, multipath effects and line of sight signal propagation (2007).

There are multiple RFID localization methods as shown in figure 2.10 (Motamedi et al. 2013).

RFID low-cost indoor localization solutions with a mean error of 1-2 m are presented by Razavi

and Moselhi (2012) and Montaser and Moselhi (2014).

Inertial Measurement Unit (IMU) is a combination of three orthogonal rate-gyroscopes and ac-

29

Figure 2.10: RF localization hierarchy

celerometers, which measure angular velocity and linear acceleration respectively. The position

and orientation of a device can be tracked with the signals from these devices (Woodman 2007).

However, positioning system using IMU has a high error propagation due to small errors dis-

tracting the gyroscope signals, which makes tilt errors grow rapidly with time in the tracked

orientation. The simulation by Woodman (2007) shows that the average error exceeds 150 meters

after 1 minute of operation.

There are several approaches to investigate different approaches to improve the performance of

indoor navigation using AR. There are basically two types of AR used for indoor positioning

and tracking, which are marker-based and markerless AR as mentioned in section 2.2.

AR markers can be used to identify the position and content to display by estimating the camera

position and orientation (Wang, Kim, Love & Kang 2013). Park, Lee, Kwon and Wang (2013)

used marker-based AR with building information model to map a virtual model onto the real

space. However, many markers need to be installed in the environment, which requires high

preparation efforts and there can be aesthetic problems (Neges, Koch, König & Abramovici

2017).

Markerless AR positioning and tracking can be achieved by building 3D point clouds using a

camera and generating a 3D map of the area (Neges et al. 2017). Simultaneous localization and

mapping (SLAM) can be used for generating a 3D map and determining the current camera

position by comparing the detected points with the points in the generated map. This method

is required to capture and store a lot of information, which increase the implementation and

maintenance costs.

30

Neges et al. (2017) evaluated the positioning approaches introduced above as shown in table

2.1.

Approach Additional IT

infrastructures

required

Data

preparation

effort

Continuous

positioning

Accuracy

WLAN - Specific

infrastructure

installation

◦ Signal

measurement at

reference points

+ Depends on

signal coverage

◦ Building-

specific

disruptive

factors
RFID - Specific

infrastructure

installation

◦ Signal

measurement at

reference points

+ Depends on

signal coverage

◦ Building-

specific

disruptive

factors
Indoor-GPS - Specific

infrastructure

installation

++ None + Depends on

signal coverage

+ Building-

specific

disruptive

factors
3D-

Maps/SLAM

+ 3D scanner

for initial data

creation

– Cleaning

recorded point

clouds

+ Depends on

point cloud

quality

+ Depends on

point cloud

quality
IMU ++ High

availability of

integrated IMU

++ Real time ++

Permanently

- High error

propagation

(++ very good/positive; + good/positive; ◦ average; - poor/negative; – very poor/negative.)

Table 2.1: Advantages and limitations of indoor positioning systems.

AlthoughWLAN, RFID and Indoor-GPS provide reasonable tracking accuracy, these approaches

require a specific infrastructure installation, which will be very intimidating to prepare for mul-

tiple huge and complex buildings on campuses. Tracking using SLAM provides a good accuracy

but it requires a lot of information of the environment to be captured beforehand. This is not

feasible for campus buildings. IMU is highly available and there is no need for preparation so

it is easy to implement. However, IMU does not provide a good accuracy, which can cause the

31

failure of the navigation function. AR markers can identify an accurate position but it requires

a lot of markers to be installed to track the user’s position continuously.

2.3.2 Pathfinding

To navigate a user, the system needs to find an optimal route from the user’s current position

to the destination. There are mainly two steps in pathfinding: a graph generation and a route

calculation.

2.3.2.1 Graph Generation

To find walkable paths and calculate the shortest route from the current position to a destination,

the environment has to be represented as a graph. There are several different techniques for graph

generation. The most common representations are waypoint graphs and navigation meshes.

The waypoint graph is one of the techniques to represent an environment. Waypoints are

representations of important points on a walkable area. All places in the walkable area in the

environment have to be reachable from any waypoint by travelling along the waypoints (Graham,

McCabe & Sheridan 2003). A waypoint graph can be generated manually or automatically

by connecting the each pair of waypoints if the object can travel to it without collision with

obstacles, which can be used to calculate a route (Zhu, Jia, Wan, Yang, Hu, Qin & Cui 2015).

Waypoint graphs are simple data structures but they require a lot of waypoints for complex

environment to provide a better path (Cui & Shi 2011).

Another widely used map representation is a navigation mesh. It can be represented by triangles,

polygons or other ways (Abd Algfoor, Sunar & Kolivand 2015). It can describe a walkable surface

of both 2D and 3D environments (Graham et al. 2003). Each polygon in a mesh is used as a

node for finding a path. A navigation mesh can also be generated manually or automatically.

There are many algorithms to automate the generation of navigation mesh (Golodetz 2013).

The main advantage of the navigation mesh is that it can represent the environment accurately

without using a lot of memory because large areas can be represented by a few large polygons

(Brand 2009). However, it is difficult to build and manage. It is important to generate a graph

that is highly simplified and easy for pathfinding (Cui & Shi 2011).

Both techniques can be used for the AR navigation system in campus buildings using floor

32

plans. As shown in figure 2.11 (Epic Games, Inc. 2012), navigation mesh finds shorter paths by

searching much less data. Therefore, the pathfinding behaviour in using a navigation mesh is

better than using a waypoint graph.

Figure 2.11: Waypoint graph and navigation mesh comparison

2.3.2.2 Route Calculation

After the routing graph is generated, a path search algorithm is applied to calculate a path

with the shortest distance. There are many solutions for short path problem. The two most

commonly used algorithms are Dijkstra’s algorithm and A* search algorithm.

Dijkstra’s algorithm computes the shortest path between two nodes on a weighted graph for

the case in which all edge weights are non-negative This algorithm was proposed by Edsger W.

Dijkstra in 1959 (Dijkstra et al. 1959). This algorithm chooses a path between a pair of vertices

that has a minimum weight on each step.

The pseudo-code for the Dijkstra’s algorithm is as follows (Kallmann & Kapadia 2016):

Dijkstra(s, t)
Initialize Q with (s, t), set g(s) to be 0, and mark s as visited;
while (Q not empty) do

v <- Q.remove();
if (v = t) return reconstructed branch from v to s;
for each (neighbors n of v) do

33

if (n not visited or g(n) > g(v) + c(v, n) then
Set the parent of n to be v;
Set g(n) to be g(v) + c(v, n);
if (n visited) Q.decrease(n, g(n));
else Q.insert(n, g(n));
Mark n as visited, if not already visited;

end if
end for

end while
return null path;

This algorithm takes the start node s and goal target node t as inputs and outputs the computed

shortest path from s to t or null if it does not exist. Q is a priority queue that stores and sorts

the nodes according to their current cost-to-come costs, which can be retrieved with function

g(n). Q.insert(n, c) stores node n with priority cost c, Q.remove() removes and returns the

node with the smallest cost in Q and Q.decrease(n, c) replaces the priority of n that is already

in Q to the new priority c. The running time of this algorithm depends on the time taken

for each operation in Q. The total running time is O(mlogn) when Q is implemented with a

self-balancing binary search tree or with a binary min-heap.

Figure 2.12: Illustration of Dijkstra’s algorithm

Figure 2.12 (Cormen, Leiserson, Rivest & Stein 2009) shows an illustration of the Dijkstra’s

algorithm by steps. The algorithm start with the vertex s. The smallest weight from vertex s is

shown within the vertices and paths are indicated with shaded edges.

34

A* search algorithm (Hart, Nilsson & Raphael 1968) is another algorithm that solves the shortest

path problem, which is an extension of the Dijkstra’s algorithm. It performs better than the

Dijkstra’s algorithm using heuristics which are based on knowledge about the specific problem

being solved. The main idea of this algorithm is to expand nodes considering their estimated

distances to the goal.

The pseudo-code for the A* search algorithm is as follows (Kallmann & Kapadia 2016):

AStar(s, t)
Initialize Q with (s, 0), set g(s) to be 0, and mark s as visited;
while (Q not empty) do

v <- Q.remove();
if (v = t) return reconstructed branch from v to s;
for each (neighbors n of v) do

if (n not visited or g(n) > g(v) + c(v; n)) then
Set the parent of n to be v;
Set g(n) to be g(v) + c(v, n);
if (n visited) Q.decrease(n, g(n) + h(n));
else Q.insert (n, g(n) + h(n));
Mark n as visited, if not already visited;

end if
end for

end while
return null path;

Only two lines are changed from the Dijkstra’s algorithm, where a cost function f(n) = g(n) +

h(n) is used instead of g(n) to sort the nodes in Q. g(n) is the same cost-to-come cost used in

the Dijkstra’s algorithm and h(n) is the heuristic cost that estimates the cost of the lowest-cost

path from n to the target node. The worst-case running time complexity is the same as the

Dijkstra’s algorithm.

Figure 2.13 (Kallmann & Kapadia 2016) illustrates the Dijkstra’s algorithm and the A* search

algorithm finding a path from green point to the red point on a grid graph, respectively. The

highlighted nodes are the nodes in Q. As shown in the figures, the Dijkstra’s algorithm reaches

to the goal at 484 iterations and find the optimal path at 486 iterations, while the A* search

algorithm encounters the goal at 321 iterations and reaches the solution in 322 iterations. It can

be seen that the nodes that are closer to the goal expands faster with the A* search algorithm.

Both algorithms can be used for this project but the A* search algorithm is preferred to be used

as it can find the optimal path faster than the Dijkstra’s algorithm.

35

(a) Dijkstra’s algorithm

(b) A* search algorithm

Figure 2.13: Illustration of path search algorithms on a grid graph

36

2.3.3 Graphical Instruction

After finding the optimal path, the path should be visualized to navigate the user to the desti-

nation. The existing 2D navigation systems like Google Maps (Google 2021d) and Apple Maps

(Apple 2016) use a moving blue dot on the 2D map to indicate the user’s current location and

a blue beam icon to show the direction that the device is facing at. When the user chooses

a destination, routes to the destination are displayed with a solid or dotted line as shown in

figure 2.14. When the user starts the navigation, the direction from the current location to the

destination is indicated with an arrow. When a compass is enabled on the device, the map

rotates automatically based on the user’s direction of movement.

(a) Apple Maps (b) Google Maps

Figure 2.14: Route visualization on 2D maps

Existing AR navigation systems use different approaches for route visualization as shown in

figure 2.15. Google Live View (Inman 2019) uses 3D arrows to show a direction to a destination.

It displays an auto-rotate 2D map with showing the current location and the path at the bottom

of the screen. The destination is indicated with a 3D icon. Gatwick Airport Official app (Gatwick

Airport Limited 2017) shows a line on the floor in the real world to navigate a user. ViewAR’s

GuideBOT Template (ViewAR GmbH 2021) navigates a user with a virtual character’s guidance.

This template allows to put descriptions at the destinations.

As mentioned earlier, combining the virtual contents and the real world would allow users to

pay more attentions to their surroundings which can reduce accidents. It will be helpful for the

navigation system in campus buildings, especially when many students are walking to different

lecture rooms in a building during a break time. Having navigation in a 3D space is more

straightforward because users are not required to read a map. It makes the navigation easier

37

(a) Google Live View (b) Gatwick Airport Official (c) ViewAR GuideBOT

Figure 2.15: Route visualization of existing systems

for them to follow. Displaying a 2D map with a path on the device screen can help the user to

identify their location and the overview of the route to the destination. Displaying an icon to

show the device orientation and auto-rotate function would be useful when the user wants to

know which direction the user is moving on the map. Visualization of the route in a 3D space can

be done by different approaches as mentioned above. Different approaches for showing graphical

instructions for this project including displaying a 2D map with additional information, such

as the user’s position and orientation and a path to destination, and route visualization in 3D

environment will be discussed in the following chapter.

2.4 Existing Works

There has been much research into indoor navigation systems using AR. For example, Neges and

others (2017, 2014) presented natural markers based AR indoor navigation for facility mainte-

nance and Rustagi and Yoo (2018) demonstrated AR indoor navigation app that uses tile sets.

In 2017, Gatwick airport installed 2,000 beacons to enable AR indoor navigation (Gatwick Air-

port Limited 2017). Passengers can find places, such as check in areas, departure gates, baggage

belts, in 3D using the Gatwick app. GuidiGO (GuidiGO, Inc. 2021) offers AR solutions including

navigation for museums and cultural institutions and ViewAR (ViewAR GmbH 2021) provides

templates to create AR indoor navigation apps.

38

2.5 Conclusion

In this chapter, different techniques and approaches that can be used for this project have

been introduced. There are two types of AR, marker-based and markerless, which both have

advantages and disadvantages for a navigation system. AR markers can be easily installed and

used for identifying the user’s position but it is only possible when the marker is visible in

the camera frame so many markers are required to track the user’s movement. On the other

hand, markerless AR can be used for indoor tracking but it costs a lot to build a 3D model of

the area. Various positioning and tracking approaches that are currently available for indoor

environments but each approach has disadvantages in terms of preparation, accuracy or cost.

With regards to the pathfinding algorithms, using a navigation mesh as a graph representation

of the environment finds shorter path with less data compared to a waypoint graph. It is found

that the A* search algorithm calculates the optimal path faster than the Dijkstra’s algorithm.

Different approaches introduced in this chapter will be compared and the best approach for this

project will be decided in later chapter of this dissertation.

39

Chapter 3

Planning

3.1 Introduction

This chapter will review the System Development Life Cycle and some popular methodologies

that are used by the software industry. After that, a methodology for this project will be chosen

and the timeline will be planned to ensure the project will be completed successfully in time.

3.2 System Development Life Cycle (SDLC)

SDLC is a generic definition of a systems project. It contains mainly four phases: Planning,

Analysis, Design and Implementation.

The first step of the planning phase is to consider the need of the system. The outputs of

this step are the system’s project description and feasibility. Next step is to plan and staff the

project. A staff list and a Gantt chart can be created in this step. Risks, Assumptions, Issues,

Dependencies (RAID) and the budget are considered in this phase.

After the planning phase, there is the analysis phase to understand the requirements of the

system. In this phase, who, what, when and where the system will be used are considered.

System requirements and specifications are defined in this phase.

In the design phase after the system requirements and specifications are defined, how the system

actually functions is considered. Details of the system are designed in technological terms. For

example, database design, user interface design and UML diagrams are created.

40

After designing the system, the implementation phase begins. This phase includes development,

testing and evaluation of the system. First of all, the system is developed according to the

design created in the previous phase. The development includes implementation of the actual

product that fulfills the requirements and specifications. The next step after implementing the

actual system is testing. Test plans for the system are designed first and the system is then

tested according to the plans. After that, the test results are evaluated and checked to see if the

system satisfies the requirements and specifications defined in the analysis phase.

The system will be maintained repeatedly after the completion of the project.

3.3 Software Development Life Cycle Methodologies

SDLC can help to define clear stages in the process and linkage between process, people and

solutions. However, it does not tell us exactly what is needed when since it is a generic approach.

There are several software development life cycle methodologies to help this problem. There are

two types of methodologies: heavyweight and lightweight.

3.3.1 Heavyweight Methods

Heavyweight methods are popular traditional development techniques which rely on a well-

defined problem and focus on one long development cycle. An example heavyweight method is

the waterfall model.

The waterfall model is a traditional method for software development attributed to Royce (Royce

1987). Figure 3.1 shows the project phases and key documentation plans for each phase in the

waterfall model. The waterfall model is a phased approach so each stage is completed before the

next stage starts. Therefore, requirements must be well-understood and the design must meet

requirements. Verification and validation (V & V) are important to this model. The system has

to be verified if it meets its requirements and is validated to check that it meets the user’s needs

in each phase.

41

Figure 3.1: The waterfall model

The V model is an extension of the waterfall model. The workflow of this model is shown in

figure 3.2 (Moschoyiannis 2018). As shown in the figure, there is an associated testing phase for

each single development phase.

Heavyweight methods have been popular because of their sequential documentation and trace-

ability, which enables a trace where a requirement is met. These methods are simple and easy

to use and work well for smaller projects with well-understood requirements. However, there

are some disadvantages. For example, it is difficult to plan and design in details at first and it

is inflexible due to the fixed design defined at the beginning of the project.

42

Figure 3.2: The V model

3.3.2 Lightweight Methods

Lightweight methods are adaptive approaches that provide solutions in dynamic environments.

It allows work on partially defined problems and focus more on implementation. It is adaptable

to rapidly changing environments.

The Agile model is a framework that divides the project into lots of short development cycles. A

working system is built at the end of every cycle. It allows users to get involved at early stages.

The Agile model is a representation of the various approaches that follows the principles stated

in the Manifesto for Agile Software Development (Beck, Beedle, Van Bennekum, Cockburn,

Cunningham, Fowler, Grenning, Highsmith, Hunt, Jeffries et al. 2001).

The prototyping model is one of the Agile models which is used to explore user requirements and

feasibility. In this model, a prototype, which is a working solution of the system with limited

functionality, is first created and tested by customers. There are different types of prototyping.

The throwaway prototyping discards prototypes so it will not be the part of the final system.

The evolutionary prototyping keep prototypes and develop these into the actual solution. The

prototyping model is useful and effective when requirements are uncertain at first. This model

can help to detect problems at early stages. However, it requires experienced developers and

customers with some knowledge about the system.

Rapid Application Development (RAD) model is another method that can be used for software

development. It is an incremental approach based on evolutionary prototyping. The timescale of

the project is decided at the beginning. This method uses Joint Requirements Planning (JRP)

and Joint Application Design (JAD) to develop solutions with users. RAD models can reduce

43

development time and increase reusability of components produced during the process.

Extreme Programming is another type of the Agile model which supports fast and continuous

development by splitting the project in short iterations and releasing small solutions. Extreme

Programming involves quick planning and simple design. Coding is done by pairs of developers

where two developers work on the same screen and users get involved in the development. This

approach can provide rapid development with low risks.

The last example of the Agile model is Test-driven Development. It is an incremental develop-

ment approach that starts with testing. Developers first write the tests for the new functionality

and run all system tests. The tests fail because no code has been written for the new functional-

ity. After writing and running the tests, changes are made to the system so that the system pass

all the tests. This process is repeated until all the functionalities for the system are complete.

This approach requires less debugging time.

3.4 Project Plan

For this project, the Agile model with evolutionary prototyping approach is chosen because the

required functionalities are not certain at the beginning and using the evolutionary prototyping

approach allows the addition of functionalities after starting the implementation. Functionalities

will be implemented one by one and tested by myself to check that the system meets the

requirements.

The Gantt chart attached in Appendix A was created to show the work plan and timeline for

this project. The chart was created using "Simple Gantt Chart" template for Excel by Vertex42

(Vertex42 2020). The project has been split into three parts, which are Research, Develop-

ment and Dissertation. Dissertation will be written while the corresponding part of research

or development is being carried out. The tasks cover the objectives for the projects. After

the basic implementation has been done, testing and implementation will be done repeatedly.

The sky-blue vertical lines show the breaks of the project which are for exams and holidays but

these breaks can be used in case of any delays in the process. Important dates for the project

are included in the chart and progresses of each task can be recorded in the sheet which then

visualize with the colour changes of the bars. This helps to identify the overall progress of the

project. Table 3.1 shows the timetable for this project.

44

Task Start Date End Date

Important

Date

Project Overview 09/11/20 09/11/20
Interim Discussion Period 16/11/20 29/11/20
Draft Report Submission 15/03/21 15/03/21
Final Submission 18/05/21 18/05/21

Research

Select a topic 30/09/20 11/10/20
Augmented Reality 12/10/20 18/10/20
AR indoor navigation 19/10/20 01/11/20
Indoor positioning and tracking 02/11/20 22/11/20
Pathfinding 23/11/20 06/12/20

Development

Evaluate/Indicate approaches 07/12/20 13/12/20
System Requirements 14/12/20 27/12/20
Implementation 01/02/21 28/03/21
Testing 01/03/21 11/04/21

Dissertation

Literature Review 12/10/20 06/12/20
System Requirements and Specification 07/12/20 27/12/20
System Design 01/02/21 28/03/21
Testing/Validation 01/03/21 11/04/21
Conclusions and Future Work 19/04/21 25/04/21
Finishing 26/04/21 09/05/21

Table 3.1: Project timetable

45

Chapter 4

System Analysis

4.1 Introduction

This chapter will analyse different technologies provided in chapter 2 and identify the best ap-

proaches for this project to define the requirements for the new application for campus buildings.

4.2 AR

Indoor navigation can be done without AR but using AR brings many advantages, such as reduc-

ing accidents, providing additional technologies for indoor positioning and tracking and offering

easier navigation as mentioned in the previous chapter. Both marker-based and markerless AR

have advantages and disadvantages to be used for this project in terms of indoor positioning

and tracking. It will be discussed with other positioning and tracking technologies later in this

chapter.

Different types of displays have been introduced in section 2.2.3. To enable AR indoor navigation,

a device must contain at least a camera to detect features in the surrounding areas and a display

to show AR contents for navigation. All of the devices mentioned earlier equip these elements.

HMDs that are currently available include a sensor which can enable additional tracking ap-

proaches like IMU. These devices can be wore on the user’s head which can reduce the discomfort

from holding a device during the navigation. However, these devices are quite expensive so not

every student and staff can purchase for using a navigation system.

46

Using SAR can be more comfortable for users because it does not require them to hold or wear

any devices and users can understand virtual content better. However, the positioning and

tracking of a user, which is one of the important features of navigation system, can only be done

by using camera information since the user does not carry any devices. Also, the installation

required for enabling navigation in campus buildings using SAR would be intimidating work and

it is not affordable to purchase the numbers of cameras and projectors for this project.

Handheld devices contain sensors and processors which enables tracking methods using IMU,

WLAN and RFID. There are many tools to develop AR applications for mobile devices and

documentations and tutorials that would be helpful for me to develop my first AR application.

Also, There are various AR mobile applications that can be used as references. The biggest

advantage of using handheld devices is that many people already have their own handheld

devices, such as smartphones and tablet PCs. There are many existing mobile apps used on

campuses which makes it more likely that most of the people on the campuses have mobile

devices.

Having compared different devices, handheld devices are chosen to be used for this project owing

to the advantages mentioned here.

4.3 Navigation

Every positioning and tracking approach introduced in section 2.3.1 has advantages and disad-

vantages. Due to the disadvantages, using a single approach does not provide a good solution for

this project. This problem can be solved by combining multiple indoor positioning and tracking

technologies. As AR markers can identify an accurate position, it can be used to initialize the

user’s position and recalibrate the position when it drifts. SLAM can be used to track the user’s

movement by comparing the previously detected points and the points after the movement by

using the device camera and calculating the changes. As AR marker provides the user’s position,

a 3D map of the area is not required to track user’s position with SLAM. Therefore, combination

of AR markers and SLAM can provide accurate positioning and tracking with little preparation

and development cost.

In section 2.3.2.1, Two graph generating methods, waypoint graphs and navigation meshes,

were introduced. The navigation mesh is going to be used to represent the walkable areas of the

47

campus buildings as it can find a shorter path with less data. As described in section 2.3.2.2,

A* search algorithm finds the optimal route faster than the Dijkstra’s algorithm. Therefore, A*

search algorithm will be applied as a pathfinding algorithm for this project.

As AR is used for the new system, the navigation in a 3D environment will be the main part

of the system. Although showing a path to a destination in the 3D environment can give a

direction to the destination, it cannot provide the user’s current position and the overview of

the route. Having a 2D map on the screen enables the identification of the user’s position and

orientation and the visualization of the overview of the route. Therefore, a 2D map is going

to be displayed for the new system. There are different ways to show a path from a current

position to a destination in the 3D environment using AR objects. Navigating with an arrow

pointing at the direction to move towards would be sufficient for this project but it might be

confusing when there are two paths in front of the user. Displaying a line as a path on the floor

would solve this problem but the implementation will be more complicated as the system has

to detect a floor to place the line and other objects to identify if the objects are in front of or

behind the line. Guiding with a virtual character would be entertaining but it is more difficult

to implement. Therefore, the arrow will be used for the initial implementation and a navigation

line and a virtual character will be included as desirable requirements for this project. An AR

object shall be placed to indicate the destination in the area. Showing descriptions about the

place in the 3D environment is not necessary for navigation but it can be useful for this project.

For example, showing a name of a professor in front of their office and timetables for lecture

rooms and laboratories can be useful for university students and lecturers. This functionality

will also be included as a desirable requirement.

There are existing AR indoor navigation systems, such as Gatwick app, GuidiGO and ViewAR

as mentioned in chapter 2.4. However, it requires a lot of works and money to install numerous

beacons in campus buildings like Gatwick airport. GuideGo and ViewAR can be used for a

navigation system in campus buildings but creating the system for all buildings on a campus

will be very expensive. This project aims for developing an accurate navigation system that can

be used for various university campuses at low cost.

48

Chapter 5

System Requirements and

Specifications

5.1 Introduction

This chapter will provide an overview of the System Requirements and Specifications.

5.1.1 Purpose

This chapter is intended to provide detailed requirements and specifications required to success-

fully complete the AR indoor navigation app. Throughout this chapter, the overview, functions

and constraints of the system will be provided.

5.1.2 Scope

This app is intended to provide a navigation function in campus buildings using AR for freshers

and returning students to find their classroom at the beginning of semesters and applicants to

look around inside the buildings on open day. This chapter follows the IEEE Recommended

Practice for Software Requirements Specifications (Committee & Board 1998).

49

5.1.3 Overview

The remaining sections of this chapter contains functions, user characteristics, constraints, as-

sumptions and dependencies of the system. The specific requirements for the system is provided

in the last part of this chapter. This part includes both functional and non-functional require-

ments.

5.2 Overall Description

This section will describe the general factors that affect the product and its requirements.

5.2.1 Product functions

When the app is first started, it will ask a user to scan a marker to load a map and initialize

the user’s current position. After scanning the marker, the app will allow the user to select a

destination from a list. After the user selects a destination, the app will calculate an optimal

route from the current device position to the selected destination. It will display a path on a

2D mini map at the corner on the device screen and shows a route in the 3D environment using

AR objects. The app will track the user’s movement and updates the route in real time. The

destination point will be indicated with an AR object in 3D so that the user can identify the

destination when the user arrives.

5.2.2 User characteristics

This app is intended to be used by university students, staff and visitors. Users should have

some experiences with using smartphones but knowledge of AR is not required. Since the app

will run on a smartphone, only one user is able to control the app but multiple users can look

at the screen and follow the navigation together.

5.2.3 Constraints

ARCore supported Android devices (Google 2021a) that have Google Play Services for AR

(ARCore) installed must be used for running the app. The performance of the app would be

reduced if the user moves the device too fast which causes the camera image to be blurry as

50

AR uses information from the camera. With the same reason, it does not work in the dark

environments. Due to the pandemic, the app is developed for a campus accommodation instead

of campus buildings with multiple classrooms.

5.2.4 Assumptions and Dependencies

The app is dependent upon the device features and functions. It is assumed that the device

functions without any errors.

5.3 Specific Requirements

This section will indicate the detailed system requirements, including functional and non-

functional requirements.

5.3.1 Functional Requirements

Functional requirements define the functions that the system should perform. The requirements

are split into two categories, essential and desirable, to ensure the core requirements are covered

first.

The following is the list of system functional requirements for the app:

• Essential Requirements

FR 1.1 The system shall access the device’s camera and display the camera image on the

screen.

FR 1.2 The system shall allow a user to scan a marker.

FR 1.3 The system shall display a 2D mini map.

FR 1.4 The system shall display a sphere on the 2D mini map to indicate the current

location of the device.

FR 1.5 The system shall track the device movement and update the sphere position on

the 2D mini map.

FR 1.6 The system shall display a button to display a list of destinations.

FR 1.7 The system shall display a destination list.

51

FR 1.8 The system shall allow user to select a destination from the list.

FR 1.9 The system shall calculate the optimal path from the current location of the device

to the selected destination.

FR 1.10 The system shall show the calculated path on the 2D mini map.

FR 1.11 The system shall show the direction in a 3D environment using AR objects.

FR 1.12 The system shall calculate the optimal path from the current location of the

device to the destination in real time throughout the navigation process.

FR 1.13 The system shall update the path on the 2D mini map in real time.

FR 1.14 The system shall update the direction in 3D environment in real time.

FR 1.15 The system shall indicate the selected destination in the 3D environment with

an AR object.

FR 1.16 The system shall allow user to scan markers to reposition the current location

while walking to the destination.

• Desirable Requirements

FR 2.1 The system shall display distances from the current location to the destinations

on the destination list.

FR 2.2 The system shall display the remaining distance to the destination during the

navigation process.

FR 2.3 The system shall allow the user to zoom in and out the 2D mini map.

FR 2.4 The system shall allow the user to select a destination on the 2D map.

FR 2.5 The system shall displays virtual descriptions of the places at the destinations

using AR objects.

FR 2.6 The system shall show the navigation line in a 3D environment.

FR 2.7 The system shall show the direction in a 3D environment using an animated char-

acter.

5.3.2 Non-functional Requirements

Non-functional requirements define how the system should perform in response to user input

and specific scenarios in terms of interface, operation, performance and security. Non-functional

requirements also define the constraints of the system.

52

The following is the list of system non-functional requirements for the app:

NFR 1 The system shall run on any ARCore supported Android devices.

NFR 2 The system shall respond within at most 3 seconds of a user interaction.

NFR 3 The system shall respond to the size of the device screen.

53

Chapter 6

System Design

6.1 Introduction

This chapter will build up a design for the application according to the system requirements and

specifications defined in the previous chapter. Use cases and UI are first designed and different

libraries and development tools are explored and compared to identify the suitable techniques

for this project at the end of this chapter.

6.2 Use Case Model

A use case diagram for the new system was created to visualize the basic actions as shown in

figure 6.1. There is one actor, which is User, for this system. User can be a university student,

staff or visitor. A 2D map and a button to display a list of destinations are not displayed initially

in case that the system supports multiple locations.

54

Figure 6.1: Use case diagram

The following are the descriptions of each action in the use case diagram.

Name Start the App
Description A user starts the app.
Pre-conditions None.

Post-conditions
A camera image is displayed on the screen and scanning function is

enabled.
Actors User

Basic Actions

1. The user starts the app.

2. The system displays the camera image on the screen.

3. The system waits for a marker to appear within the camera view.

55

Name Scan a Marker
Description A user scans a marker with the device camera.
Pre-conditions The user started the system.

Post-conditions

• An accurate user’s position is indicated as a pointer on the 2D mini

map.

Actors User

Basic Actions

1. A user scan a marker.

2. The system performs “Initialize” use case if the user scan a marker

for the first time after starting the app.

3. The system obtain the user’s position from the scanned marker.

4. The system displays the user’s position on the 2D mini map.

Name Initialize

Description
Display 2D mini map and a button to display a list of destinations on

the device screen.
Pre-conditions "Scan a Marker" use case is in progress.

Post-conditions

• 2D mini map is displayed on the device screen.

• A button to display a list of destinations is displayed on the device

screen.

Actors User

Basic Actions

1. The system displays a 2D mini map at the corner of the screen.

2. The system displays a button to display a list of destinations.

56

Name Press the Button to Display a List of Destinations
Description A user taps the button on the screen to display a list of destinations.
Pre-conditions "Initialize" use case has been performed.
Post-conditions The list of destinations is shown on the screen.
Actors User

Basic Actions

1. A user taps the button on the screen.

2. The system displays a list of destinations.

3. The user optionally performs "Select a Destination" use case.

Name Select a Destination
Description A user selects a destination from the list.

Pre-conditions
"Press the Button to Display a List of Destinations" use case is in

progress.

Post-conditions

The shortest path from the current user’s position to the selected des-

tination is displayed on the 2D mini map and the direction is shown in

the 3D environment with AR objects.
Actors User

Basic Actions

1. A user selects a destination from the list of destinations.

2. The system calculates the optimal route from the user’s current

location to the selected destination.

3. The system displays the calculated path on the 2D mini map.

4. The system displays the direction in the 3D area using AR objects.

57

Name Move
Description A user moves a device.
Pre-conditions "Initialize" use case has been performed.
Post-conditions The user’s current location is indicated on the 2D map.
Actors User

Basic Actions

1. A user moves the device that runs the system.

2. The system tracks the device movement.

3. The system gets the user’s current position.

4. The system updates the position of the pointer on the 2D mini

map according to the user’s current position.

5. The system performs "Update the Path to the Destination" use

case if "Select a Destination" use case has been performed.

Name Update the Path to the Destination

Description
The system updates the optimal path from the user’s current location

to the destination.
Pre-conditions "Move" use case is in progress.

Post-conditions

The shortest path from the current user’s position to the selected des-

tination is displayed on the 2D mini map and the direction is shown in

the 3D environment with AR objects.
Actors User

Basic Actions

1. The system calculates the optimal route from the user’s current

location to the selected destination.

2. The system updates the path on the 2D mini map with the newly

calculated path.

3. The system updates the direction in the 3D area using AR objects

with the newly calculated path.

58

6.3 User Interface (UI) Design

As the app uses AR to navigate a user, the important part of the app is the camera image and

AR objects in the environment. Therefore, there should not be any contents on the screen that

distract the actual navigation.

As described in "Start the App" use case description, the app waits for a user to scan a marker

when the user starts the app. It should display a camera image but there should also be a

description of what the user has to do, otherwise user does not know what the next step is after

launching the app. A text that asks the user to scan a marker is placed in the middle of the

screen to avoid the confusion.

After a marker is scanned, a 2D mini map and a button to display a list of destinations should be

placed on the screen as the requirement FR 1.3 and FR 1.6 define. These must be displayed all

the time so the user can check the current location and change the destination anytime. These

are placed at the top of the screen so these do not disturb the actual navigation and the user

does not touch it mistakenly during the navigation. To meet the requirement FR 1.7, the list of

destinations is displayed as a drop-down list when the user click the button.

Figure 6.2 shows the wireframes of the UI design for the application. The grey areas in the

wireframes are where the camera images and AR objects are shown.

6.4 Technology Choices

There are many Software Development Kits (SDKs) for developing AR mobile apps available.

Vuforia Engine (PTC 2020) is the most popular AR SDK released by PTC. It has been used

by leading companies, like LEGO and Mercedes. Vuforia Engine supports AR app development

for Android, iOS, Lumin, and UWP devices. It is free to use for development but a license

is required when the product is deployed. Vuforia offers a variety of features including object

detection, virtual buttons and occlusion management. Vuforia Engine uses SLAM and other

technologies from ARKit and ARCore. Using Vuforia Engine, applications can be developed on

Unity, Visual Studio, Android Studio and Xcode.

ARCore (Google 2020) is another popular SDK for developing AR applications released by

Google. It is free and it supports both Android and iOS devices. Main concepts of ARCore is

59

(a) Before scanning a marker (b) After scanning a marker (c) When displaying a list of

destinations

Figure 6.2: Wireframes of the UI design

that it allows the system to track the device position using SLAM and IMU, detect the size and

location of all type of surfaces, and estimate the environment’s lighting condition. It also allows

the system to track objects and users to interact with virtual objects in the environment. There

is a feature called "Augmented Image", which responds to specific 2D images. This feature can

be used for marker detection for this project. It has been used to develop various apps, such

as lifestyle, game, and real-estate apps. It can be used on Android Studio, Unity, Xcode and

Unreal Engine.

ARKit (Apple Inc. 2021) is an open source AR SDK for iOS devices created by Apple. It supports

devices with iOS 11.0 or later. Applications can be developed with Xcode. There are many

features, including multiple face tracking, visualising the shape of the physical environment and

motion capture. ARKit uses visual-inertial odometry for motion tracking. It uses a combination

of information from the device’s motion sensing hardware and the information from the device’s

camera. It recognizes notable features in the environment, track differences in the positions of

those features and compare it with motion sensing data. It provides a precise device position

and motion.

60

ARToolKit (Kato & Billinghurst 1999) is another open source AR SDK. As mentioned in section

2.2.1, ARToolKit is popular and useful for many applications but there are disadvantages, such

as high false positive and inter-marker confusion rates, high sensitivity to lighting conditions

and large library size. It runs on Linux, Mac OS X, and Windows and there are plug-ins for

Unity and OpenSceneGraph. The plugin for Unity supports on OS X Windows, Android and

iOS. It supports Image detection but does not support motion tracking.

MAXST (MAXST 2019) is a Korean technology company established in 2010 that has focused on

AR. The AR SDK launched by MAXST supports various trackings, such as QR codes, barcodes,

markers, images, objects, planes and feature points. The SLAM provided by this SDK integrates

the information from camera image with data of IMU sensor as ARCore does. This enables

tracking featureless environments, fast movements and on-the-spot rotation. Applications can

be developed on Unity, Android Studio and Xcode for iOS and Android devices and Smart

glasses. There is a free license for a non-commercial app and paid licenses including SDK

updates. It has been used for developing entertainment, business, education, social, tourism and

healthcare apps.

Wikitude AR SDK is another powerful AR developing platform that has been used by a huge

community of developers to create more than 40,000 apps for variety of industries, such as the

Jack Daniel’s AR experience and Nissan LEAF AR app (Wikitude 2021b). It supports not

only tracking as other SDK do but also supports tracking multiple images, objects and the

environment at the same time. It also supports cloud recognition, which enables the apps to

recognize up to 100.000 thousand images. Wikitude provides SDKs, third-party plug-ins and

tools for various platforms to develop AR apps. Wikitude AR SDK includes SLAM technology

which integrates ARKit and ARCore on top of Wikitude’s SLAM engine. There are only paid

licenses but a free trial is available for a short period.

Table 6.1 shows the summary of the AR SDKs introduced above to compare these in terms of

costs, supported devices, development platforms and functionalities, image detection and motion

tracking, that are required for the AR indoor navigation app.

Unity (Unity Technologies 2021a) is a platform for developing 2D, 3D and VR games and apps

available for Windows, Mac and Linux. It has been used by many leading companies to develop

applications for gaming, automotive, film and architecture. One of the advantages of Unity is

that there’s a large global community supports.

61

Name Cost Supported Devices Development Platform Image

Detection

Motion

Tracking
Vuforia Free

/Paid
• Android

• iOS

• Lumin

• UWP

• Unity

• Visual Studio

• Android Studio

• Xcode

O O

ARCore Free
• Android

• iOS

• Unity

• Android Studio

• Xcode

• Unreal Engine

O O

ARKit Free iOS Xcode O O
ARToolKit Free

• Linux

• Mac OS X

• Windows

• Android

• iOS

• Unity

• OpenSceneGraph

O X

MAXST Free

/Paid
• Android

• iOS

• Smart

Glasses

• Unity

• Android Studio

• Xcode

O O

Wikitude Paid
• Android

• iOS

• Smart

Glasses

• UWP

• Unity

• Android Studio

• Xcode

• Visual Studio and

others

O O

Table 6.1: Summary of AR SDKs

62

There is a framework called AR Foundation which let developers to build AR applications for

multiple mobile and wearable devices in Unity (Unity Technologies 2021b). AR Foundation

includes core features from ARKit, ARCore, Magic Leap, and HoloLens and unique features

from Unity. It allows developers to switch AR devices without rebuilding apps. Supported

features are shown in figure 6.3.

Figure 6.3: AR Foundation supported features

Using AR Foundation, the app can be developed for different platforms at the same time with

additional Unity features. Even though the app for this project is developed for Android devices,

it is easy to change the target devices to other operation systems like iOS using AR Foundation.

The app can help more people on university campuses if the app is made for multiple operation

systems. Unity’s well-organized documentation and dynamic community of developers would

be a great support for me to create my first AR application. Unity includes functions to create

navigation mesh and find an optimal path using A* search algorithm, which is very useful for

63

this project. Also, I have some previous experience with developing a game with Unity. From

these reasons, I chose to use AR Foundation in Unity to develop an application for this project.

64

Chapter 7

Implementation

7.1 Introduction

This chapter describes how the final application was implemented in detail including different

approaches used for the implementation and challenges and problems encountered during the

development process. First, the main implementation was carried out to cover the essential

requirements. There were six stages for the main implementation: setting up, UI, marker

scanning, tracking, pathfinding and AR navigation. These development stages were carried out

sequentially and the system was tested at the end of each stage. After completing the main

implementation, the additional implementation was carried out to meet some of the desirable

requirements. The following sections give a detail description of the implementation. Due to

the pandemic, the application was developed in a student accommodation instead of campus

buildings.

7.2 Main Implementation

7.2.1 Setting up

As mentioned in section 6.4, the system was developed using AR Foundation on Unity. C#

is used for scripting in Unity and codes are edited using Visual Studio 2019. AR Foundation

and ARCore XR Plugin were first installed to enable the construction of the AR application on

Unity. After that, an AR Session and an AR Session Origin were added to the scene. The AR

65

Session enables AR experience and tracks features in its environment. The AR Session Origin

is used to transform trackable features in the environment into their final position, orientation

and scale in the Unity Scene. The scale of the AR Session Origin for this application is set

to 1 so the data coming from the device will not be scaled, which means that 1 unit in the

unity space represents 1 meter in the real world. The AR Pose Driver drives the local position

and orientation of the parent Game Object according to the device’s tracking information. It

is attached to the AR Camera so it can drives the camera’s position and orientation according

to the device’s movement. Minimum API Level is set to Android 7.0 ’Nougat’ (API Level 24)

as it is the minimum requirement for ARCore (Google 2021a). The default orientation is set to

Portrait to disable the auto orientation when the device is rotated. The deployment target for

this project is set to Android and the application is tested on my own Android device. After

setting these up, the application supports AR and displays a camera image on the screen when

the app is launched, which covers FR 1.1. Git and GitHub were used for version control. The

summary of the development environments for this project is shown in table 7.1.

Operating System Windows 10
Development Platform Unity 2020.2.1
Programming Language C#
Integrated Development Environment (IDE) Visual Studio 2019 16.9.4
Packages AR Foundation 4.1.7

ARCore XR Plugin 4.1.7
Testing Device Motorola Moto G8 Power Lite
Version Control Git and GitHub

Table 7.1: Summary of the development environments

7.2.2 UI

To display UI contents on the device screen, a canvas was added to the scene. The render mode

of the canvas is set to "Screen Space - Overlay" so that the canvas automatically resizes to

match the device screen when it is resized or changes the resolution. The UI scale mode is set

to "Constant Pixel Size" to avoid the components being too small or too big for the devices

with small or large screen sizes. All the UI contents were added on the canvas so that these are

displayed on the screen.

66

When the app is launched, a text that asks a user to scan a marker is displayed using a text

component and it is removed when a marker is scanned. After the user scans the first marker,

the app displays a 2D map and a button to show a list of destinations as FR 1.3 and FR 1.6

define. These UI components should not be shown at the beginning because the app cannot get

the user’s location until a user scans a marker. The app cannot display the right part of the map

and cannot navigate the user to a destination even though the user selects a destination without

knowing the user’s current location. Therefore, these components are deactivated initially and

set active when the app recognizes the first marker.

A floor plan, which can be found in Appendix B, is used as a 2D mini map for the app. As

FR 1.5 defines, the mini map should be updated in real time according to the device movement

so the floor plan cannot be displayed as a plain image on the screen. It was first uploaded as

an image and applied to a plane object as a material. The plane was scaled so the size of the

map is same as the size of the real world. To display the mini map on the screen, a raw image

component was added on the canvas. The raw image component can display any type of texture.

A Render Texture was created to be displayed in the raw image component. It is a type of a

texture in Unity that can be created and updated at run time using image data taken from a

camera. A camera was placed above the floor plan in the scene and rotated so that it points at

the floor plan and get the floor plan as image data. To meet FR 1.4, a sphere was also added

to the scene right below the camera on the map to indicate the position of the user. It was

attached to the camera so that it follows the camera movement and appears in the middle of

the mini map all the time. The Render Texture was assigned to the camera as a target texture

so it takes the image data from the camera as a texture and the texture was applied to the raw

image component on the canvas. It allows the app to display the floor plan on the screen and

update it in real time as the camera moves.

A drop-down component was added to show the list of destinations on the canvas and to allow

the user to select a destination from the list. It will display a list of destinations when the user

taps the button. No destination should be selected when the app is first launched but Unity

does not support a drop-down without selected option. To solve the problem, the first option is

set as "DESTINATIONS" and it is removed from the list once the user selects a destination.

The initial text is displayed in the middle, 2D mini map is placed at the top left corner and a

button for displaying the destination list is placed at the top right corner of the device screen as

67

designed in figure 6.2. All of the UI components are anchored to the canvas so that these stay

inside the screen when devices with different screen sizes are used. The figure 7.1 shows how the

components are anchored.

Figure 7.1: UI

The initial text is anchored to the centre of the canvas so it stays in the middle of the screen.

If the mini map and the drop-down is anchored at the top corners and set to fixed sizes, these

components will be too small for large screens and too big for small screens. These components

can overlap with each other if the width of the screen is smaller than the total width of these

components. To avoid these, each corner of the components are anchored to different positions

on the canvas. The top left corner of the mini map is anchored at the top left corner, the top

right corner is anchored to a point 40% from the left edge and the bottom left corner is anchored

to a point 20% from the top edge of the canvas so it stays at the top left corner and scale with

the screen size. Similarly to the mini map, the right corners of the drop-down are anchored at

the top right corner and left corners are anchored to a point 50% from the right side. Fixed

height is set to the drop-down so it only scales the width. Offsets are set as the orange arrows

68

shown in figure 7.1 so there are gaps between the drop-down and the edges of the screen.

7.2.3 Marker Scanning

To meet the FR 1.2, the system must be able to recognize markers. AR Foundation includes

Augmented Image API which enables AR apps to detect and track 2D images in the user’s

environment (Google 2021b). In this project, images are used as markers using the API. One

database can contain 1000 reference images which means that the system can recognize 1000

different images in the environment. The images can be fixed in place or moving.

According to Google (2021b), the images must:

• Fill at least 25% of the camera frame to be initially detected.

• Be flat (for example, not wrinkled or wrapped around a bottle).

• Be in clear view of the camera. They should not be partially obscured, viewed at a highly

oblique angle, or viewed when the camera is moving too fast due to motion blur.

Images with sufficient resolution with many unique features should be used. There is a tool called

"arcoreimg" in the ARCore SDK which provides a quality of an image with a score between 0

and 100. It is recommended to use images with a score of at least 75.

For this application, some free images were downloaded from Pixabay (2021) and the quality of

the images were checked with arcoreimg. Some results are shown in figure 7.2.

The images with a score of 75 or above were chosen as markers for the application. A Reference

Image Library was added to the project and the chosen images are added to the library. An

AR Tracked Image Manager was added to the AR Session which enables the application to

detect the images in the library. This manager creates an object for each detected image with

the information in the reference library. By subscribing to the manager’s event function called

"trackedImagesChanged", the app can be notified when the images are added, updated and

removed and get information about the images. When an image is added for the first time,

the initial text is removed from the screen and the mini map and drop-down on the canvas are

activated.

To meet the FR 1.16, the user’s current location should be updated every time a marker is

scanned with the device. To do this, the app should identify the image, get the user’s current

69

(a) Score: 0 (b) Score: 35

(c) Score: 75 (d) Score: 100

Figure 7.2: Image quality scores given by arcoreimg tool

position and orientation from the image data and update the position and rotation of the mini

map camera (the camera above the floor plan) so it displays the right part of the map with the

right angle and the pointer on the map is at the user’s location.

The AR Tracked Image Manager creates an object and adds it to the scene when the image

is detected for the first time and the image will be tracked all of the time regardless of the

visibility of the image until it is removed. To determine the visibility of the image, the image’s

tracking state is checked. The state is likely to be "Tracking" when it is visible and "Limited"

when it is invisible. Repositioning of the user’s current location should be done only when the

image becomes visible so the state of the detected image should be "Tracking". After checking

the image’s tracking state, the information of the image should be retrieved to get the user’s

current location. Unique names are given to the images in the reference library so that the

names of the images can be used as information to get the user’s location. To get the position

and orientation of the device using the name of the detected image, objects with the same name

as the corresponding images are created in the scene and placed and rotated on the map so

that each object represents the position and orientation of the device when the device scans the

markers. When an image becomes visible in the device screen, the app gets the name of the

70

image and find the object with the same name as the detected image. The mini map camera is

moved to the point above the object and rotated on the y axis so the pointer on the map goes to

the user’s position on the map and the direction that the device is facing goes the top of the map.

A Boolean variable is used to avoid the app performing the repositioning continuously while an

image is visible. It is set to true when the tracking state of an image becomes "Tracking" and

set to false when it changes to another state. The repositioning is performed when the Boolean

value is false so it is only performed when the state changes to "Tracking" from another state.

7.2.4 Tracking

As the FR 1.5 defines, the app shall track the device movement. Tracking is one of the most

important features of the app because navigation cannot be performed without tracking the

user’s location. This part was the most challenging part through the implementation. Many

approaches were taken to find the best solution to perform tracking for the app during the

development.

Since the AR Pose Driver is attached to the AR Camera, it drives the AR Camera according

to the device movement. The first approach was to attach the sphere on the map to the AR

Camera as a child so that it follows the AR Camera’s movement automatically. However, the

floor plan is placed far from the AR Camera in the scene so that it does not appear in the device

screen. If the sphere is attached to the AR Camera, it does not only follow the position but

also rotation so that it moves around the AR Camera with the AR Camera as a pivot when the

device rotates. This means that the sphere does not stay on the map. Therefore, this approach

does not perform the tracking properly.

After the failure of the first approach, the sphere was detached from the AR Camera. The next

approach was to get the position and rotation of the sphere from position and rotation of the AR

Camera every frame. The idea of this approach was to move AR Camera in the scene and set

the orientation respective to the marker position and orientation in the real world every time the

device scan a marker so the position of the sphere on the map and the rotation of the map can

be obtained from the AR Camera position and orientation. However, moving the AR Camera

is not enabled because the pose driver is driving it. Instead of moving the AR Camera, the AR

Session was restarted and the AR Session Origin was initialized at the respective position every

time the device scans a marker so that the AR Camera is placed and rotated according to the

71

marker’s position and orientation but restarting the AR Session takes a while which distracts

the navigation flaw and does not meet the requirement. Therefore, the position of the sphere

must be calculated without moving or initializing the AR Camera position.

Different calculation methods were experimented with. First method was to calculate the po-

sition of the sphere by adding the distance between the initial AR Camera position and the

position of the scanned marker on the floor plan to the current AR Camera position. The rota-

tion of the mini map camera was set as the rotation of the AR Camera so that the orientation

of the device matches the rotation of the mini map. This works if the orientation of the device

when the AR Session is initialized is the same as the orientation of the floor map. However, if

the device is facing in a different direction when initializing the AR Session, the sphere on the

map moves in the wrong direction because the axes of the floor plan does not match with the

real world. Next method was to calculate the position of the sphere using the distance between

the AR Camera position in the previous frame and current frame. However, it doesn’t take

the orientation of the device into consideration either so it does not move to the right direction

unless the AR Session is initialized at the same direction as the floor plan in the scene.

I tried to solve this problem by rotating the floor plan when the device scans a marker so

the orientation of the device is the same as the orientation of the floor plan. It worked for

tracking but there was a problem for navigation because the generated navigation mesh cannot

be rotated so the orientation of the floor plan and the navigation does not match. Therefore,

the code changes for tracking and navigation were reverted and the implementation was started

over from the tracking.

The succeeded approach was to use an anchor to calculate the position of the sphere on the map

and the rotation of the mini map camera. An object is created and positioned as an anchor

every time the device scans a marker. The object works as a new origin so the device movement

can be calculated from the AR Camera position and orientation relative to the object. When

placing the object, the rotation of the scanned marker is added to the object so the direction of

the map is same as the direction that the device is facing at. The position and the orientation of

the mini map camera is updated every frame after the first marker is scanned by the following

code. Update function is called once per frame.

void Update()
{

72

currPosition =
anchor.transform.InverseTransformPoint(ARCamera.transform.position);↪→

diffPosition = currPosition - prevPosition;
diffPosition.y = 0.0f;
minimapCamera.transform.position = minimapCamera.transform.position +

diffPosition;↪→

prevPosition = currPosition;
diffrot = ARCamera.transform.rotation *

Quaternion.Inverse(anchor.transform.rotation);↪→

minimapCamera.transform.eulerAngles = new Vector3(90,
diffrot.eulerAngles.y, 0);↪→

}

First, the difference between the positions of the AR Camera relative to the anchor position in

the current frame and the previous frame is calculated. Transform.InverseTransformPoint

function, which transforms position from world space to local space, is used to get the position

relative to the anchor. The y component of the calculated difference is set to 0 so that the height

of the sphere and the mini map camera stays the same. Then, the difference is added to the

position of the mini map camera to move the camera and the sphere based on the AR Camera

movement. The current position is set as a previous position to be used for the calculation in

the next frame. The y component of the difference between the rotation of the anchor and the

rotation of the AR Camera is set to the mini map camera every frame so that the mini map on

the screen rotates according to the device orientation.

7.2.5 Pathfinding

As described in section 2.3.2, there are two steps in pathfinding, graph generation and route

calculation.

Graph generation is done by using a navigation mesh because it is superior to waypoint graphs as

explained in the literature review. The navigation system in Unity allows to create a navigation

mesh automatically from a scene geometry to represent the walkable surface. Following steps

were taken to create a navigation mesh. First, multiple planes were placed in the scene to

represent the walkable area as shown in figure 7.3.

The set of planes was selected as a Navigation Static to include in the building process and

the navigation mesh was built with adjusted setting so that all the areas are connected. The

generated navigation mesh can be seen as a blue area in figure 7.4.

73

(a) Walkable area on the floor plan (b) Resulted plane

Figure 7.3: Walkable area represented with planes

Figure 7.4: Resulted navigation mesh

The next step is a route calculation. Unity has a function to calculate an optimal path between

two points on the navigation mesh using A* search algorithm. Multiple destinations are added

to the drop-down list and objects were created on the floor plan in the scene to represent the

destination points. The same names as the destinations in the drop-down list were given to the

objects so the destination point can be found by the name when the user select a destination

from the list. The following code was added for performing actions when the user selects a

option in the drop-down. Start function is called before the first frame updates.

void Start()
{

selected = false;
dropdown.onValueChanged.AddListener(delegate {

dropdownValueChanged(dropdown);
});

}

74

void dropdownValueChanged(dropdown change)
{

if (!selected && change.value != 0)
{

dropdown.options.RemoveAt(0);
selected = true;

}
dest = GameObject.Find(dropdown.captionText.text);

}

A listener is added to detect when the user selects an option in the drop-down and perform

an action. The Boolean variable called selected is used to check if a destination is selected.

When the system detects a selection by the user, it finds an object with the same name as the

selected option in the scene. When the user selects the first destination, the first option called

"DESTINATION", which was added as the caption of the drop-down when the app is launched,

is removed and selected is set true.

Then, a line renderer is used to show the calculated path on the 2D map by setting the corners

of the paths from the calculated path as the positions of the line renderer. A line renderer is

added to an object and a constant width and a solid colour were set. The following code is

added to the Update function to display the path.

if (selected)
{

NavMesh.CalculatePath(pointer.transform.position,
dest.transform.position, NavMesh.AllAreas, navmesh);↪→

line.positionCount = navmesh.corners.Length;
line.SetPositions(navmesh.corners);
line.enabled = true;

}

It first checks if a destination is selected. If selected, it calculates a path between the position of

the sphere and the position of the destination object found by the name of the selected option

on the floor plan using NavMesh.CalculatePath function. The resulting path is stored in a

variable called navmesh which has been initialized in the Start function. The path is represented

as a list of waypoints stored in an array. To display the line renderer, it first sets a number of

vertices. Then, it sets the positions of all vertices in the line with the calculated path. Finally,

it enables the line renderer to make it visible.

The implementation above allows the system to meet the requirements FR 1.7 to FR 1.10. The

75

route calculation is done every frame so FR 1.12 and FR 1.13 are also covered.

7.2.6 AR Navigation

To enable the navigation in the 3D space, a 3D arrow to show the direction and a 3D icon to

indicate the destination point in figure 7.5 were created using a 3D computer graphics software

called "Blender" (Blender Foundation 2021).

(a) Arrow (b) Destination point

Figure 7.5: 3D objects created with Blender

These objects were added to the scene and materials were applied to these to set the colour.

These are deactivated so that it is not visible when the app is launched and activated when the

device scans the first marker.

The arrow is attached to the AR Camera with offsets to display the arrow in the screen all the

time. The arrow is rotated so that it points at the direction the user should move towards with

the following code.

direction = line.GetPosition(1) - pointer.transform.position;
arrow.transform.eulerAngles = new Vector3(0,

ARCamera.transform.eulerAngles.y +
Vector3.SignedAngle(minimapCamera.transform.up, direction, Vector3.up),
0);

↪→

↪→

↪→

It first calculates the direction from the sphere on the map to the second vertex of the line

renderer. Then, the angle between the calculated and the direction that the device is facing at

is calculated direction using SignedAngle function. The sum of the y component of the AR

Camera rotation and the calculated angle is then set to the y component of the arrow rotation.

To place the 3D icon at the selected destination point in the 3D space, not only the direction to

76

the point but also the distance between the current position and the destination point is required.

Instead of calculating the angle and the distance separately, the position of the destination point

relative to the sphere on the floor plan is obtained and used to get the position of the destination

point relative to the AR Camera in the 3D space. The following code is added to display the

3D icon to indicate the selected destination point in the 3D space.

pointer.transform.eulerAngles = new Vector3(0,
minimapCamera.transform.eulerAngles.y, 0);↪→

dest_pos = pointer.transform.InverseTransformPoint(dest.transform.position);
camera_pos = new GameObject();
camera_pos.transform.position = ARCamera.transform.position;
camera_pos.transform.eulerAngles = new Vector3(0,

ARCamera.transform.eulerAngles.y, 0);↪→

dest_point.transform.position =
camera_pos.transform.TransformPoint(dest_pos);↪→

First, the sphere on the map is rotated based on the rotation of the mini map camera so that it

points at the direction that the device is facing at. Then, the position of the selected destination

point relative to the sphere is obtained using Transform.InverseTransformPoint function.

Next, the position of the destination point in the 3D space is calculated by converting the

obtained position with the AR Camera position as an origin into the world space position using

Transform.TransformPoint function. When calculating the position of the destination point

in the 3D space, only the y component of the AR Camera rotation must be considered because

the rotation of the AR Camera in x and z axis must not effect on the position of the destination

point as the position was calculated on the 2D map. It is impossible to rotate the AR Camera

via script as AR Pose Driver is driving the AR Camera so a new object is created to represent

the AR Camera. It is positioned at the AR Camera position and rotated in y axis based on the

AR Camera rotation. Using the object, the destination point in the 3D space is calculated and

the 3D icon is placed at the point.

The 3D icon is successfully positioned at the destination point in the 3D space but there is a

problem which is that the icon can be seen through the objects in the real world, such as doors

and walls. There is a manager called AROcclusionManager in Unity that enables the virtual

content and real-world object to occlude each other. Using the manager can solve the problem

but it is only available for the devices that supports Depth API. Unfortunately, the device that

is used for this project does not support Depth API and any alternative solution cannot be

found for this problem.

77

This part covers FR 1.11 and FR 1.15. The code for AR navigation shown above is added in

the Update function so the 3D components are updated every frame. This covers FR 1.14.

7.3 Additional Implementation

Functions are added to the system after completing the above implementation to meet the

desirable requirements. Unfortunately, some of the desirable requirements could not be covered

due to the time and hardware constraints.

7.3.1 Distance Calculation

The first function added to the system was displaying the distances from the current position

to the destinations in the list. To display the distance, the distance to the each destination

must be calculated and the texts in the drop-down list must be replaced. To do that, the

optimal path to the each destination is first calculated using NavMesh.CalculatePath function

as mentioned earlier. Then, the distance between the stored waypoints are calculated and

summed up to calculate the total distance from the current point to the destination point. After

the calculation, the name of the destination and the calculated distance are concatenated and

stored in the list of strings. After calculating the distances to all the destinations in the list, the

drop-down options are replaced with the stored strings by clearing the drop-down and adding

the new options. The distances are shown in meters and formatted to show only 2 decimal

places. The following is the code added for this function.

List<string> options = new List<string>();
int skip = 0;
if (!selected)
{

skip = 1;
options.Add(dropdown.options[0].text);

}
for (int i = skip; i < dropdown.options.Count; ++i)
{

GameObject destination =
GameObject.Find(dropdown.options[i].text.Split(' ')[0]);↪→

NavMesh.CalculatePath(pointer.transform.position,
destination.transform.position, NavMesh.AllAreas, navmesh);↪→

float dist = 0.0f;
for (int j = 1; j < navmesh.corners.Length; ++j)
{

78

dist += Vector3.Distance(navmesh.corners[j - 1],
navmesh.corners[j]);↪→

}
options.Add(dropdown.options[i].text.Split(' ')[0] + " (" +

Math.Round(dist,2) + "m)");↪→

}
dropdown.options.Clear();
dropdown.AddOptions(options);

As the drop-down options contain the name of the destinations as well as the distances, the

selected destination name is taken by splitting the text and getting the first word when finding

the destination object on the map. Also, when displaying the distances before selecting any

destinations, the calculation skips the first option, which is "DESTINATIONS".

This function covers FR 2.1 and FR 2.2. Unfortunately, the drop-down options cannot be

updated when the list is displayed so the distances cannot be updated in real time. This

problem can be solved by using another UI component to display a list of destinations instead of

a drop-down. However, the further implementation for this function was not carried out because

of the time constraints.

7.3.2 Zoom

The second function is zooming the mini map. The approach taken for implementing this

function is to detect the touch inputs and calculate the difference between the distances be-

tween the two touch inputs in the previous frame and the current frame. Firstly, the sys-

tem checks if there are two touch inputs and these are inside the mini map frame using

RectTransformUtility.RectangleContainsScreenPoint function. This function returns true

if the point is inside the rectangle. After checking that two inputs are inside the frame, the po-

sitions in the previous frame are calculated by subtracting the delta positions from the current

positions. Then, the distances between the two inputs in the previous frame and the current

frame and the difference between the calculated distances are calculated. Finally, the difference

is used to move the mini map camera downwards or upwards to zoom in or out. The following

is the code added for this function.

79

if (Input.touchCount == 2 &&
RectTransformUtility.RectangleContainsScreenPoint(rect,
Input.GetTouch(0).position) &&
RectTransformUtility.RectangleContainsScreenPoint(rect,
Input.GetTouch(1).position))

↪→

↪→

↪→

↪→

{
Touch touchZero = Input.GetTouch(0);
Touch touchOne = Input.GetTouch(1);

Vector2 touchZeroPrevPos = touchZero.position - touchZero.deltaPosition;
Vector2 touchOnePrevPos = touchOne.position - touchOne.deltaPosition;

float prevTouchDeltaMag = (touchZeroPrevPos -
touchOnePrevPos).magnitude;↪→

float touchDeltaMag = (touchZero.position -
touchOne.position).magnitude;↪→

float deltaMagnitudeDiff = prevTouchDeltaMag - touchDeltaMag;

minimapCamera.transform.position = minimapCamera.transform.position +
Vector3.up * deltaMagnitudeDiff / 10;↪→

if(minimapCamera.transform.position.y < 2)
{

minimapCamera.transform.position = new
Vector3(minimapCamera.transform.position.x, 2,
minimapCamera.transform.position.z);

↪→

↪→

}
if(minimapCamera.transform.position.y > 20)
{

minimapCamera.transform.position = new
Vector3(minimapCamera.transform.position.x, 20,
minimapCamera.transform.position.z);

↪→

↪→

}
pointer.transform.position = new Vector3(pointer.transform.position.x,

0, pointer.transform.position.z);↪→

}

To avoid zooming in or out too much, a minimum and maximum position of the mini map

camera were set. When the mini map camera is at the position lower than minimum position or

higher than the maximum position, the camera is repositioned to the minimum or the maximum

position, respectively. As the sphere is attached to the camera, it also moves up and down as

the camera moves. The sphere must be on the map all the time so it is repositioned after the

camera is moved to the desired position. This covers FR 2.3.

80

7.3.3 Navigation Line

The 3D arrow was replaced with 3D line to show the path in the 3D environment to meet FR

2.5. Although the replacement was successful, the line does not occlude with the objects in the

real world so the whole path are shown through the walls. Also, setting the height of the line

was difficult as the system currently does not take the height of the markers in consideration.

This makes the navigation very confusing so the implementation was reverted.

81

Chapter 8

Testing/Validation

8.1 Introduction

This chapter will provide the descriptions of how the implemented system was tested and the

results gained from the testing. There were two kinds of testing, performance testing and

requirements testing have been carried out. Conducting user acceptance testing would be very

useful to check if the system meets user expectations and requirements. However, it was not

possible due to the pandemic situation. The evaluation of the testing results will be provided

at the end of this chapter.

8.2 Performance Testing

First of all, performance testing was carried out to test the tracking ability of the system as it

is one of the most important parts of the system. It is tested by walking in the accommodation

as shown in figure 8.1 and check how the system tracked the movement. Two kinds of tests were

carried out. One is without repositioning and another one is with repositioning using markers.

The screen of the device was recorded during the tests and screenshots at the numbered position

on the maps are provided to show the results of the tests.

First, testing without repositioning was carried out. During the test, no marker was scanned

except a single one to initialize the device position. The system tracked the device as can be

seen in figure 8.2. Blue points and arrows show where the tracking performed as expected

and red points and arrows show the tracking performed differently from the expectation. The

82

Figure 8.1: Testing route

screenshots taken at the numbered points on the map are provided in Appendix C.

The tracking went wrong at the blue number 5 point where the position of the device suddenly

jumped to the blue number 3. By looking at the screenshots in figure 8.3, it can be seen that the

system tracked the device correctly until it reached at the position at the blue number 5 point

as the sphere on the map is at the right place in the screenshot (b). However, the sphere on the

map shows that the device is at the position of the blue 3 point although the device is actually at

the blue 5 point in the screenshot (c). By looking at the screenshots in the figure, it is likely that

the system recognized that the two positions are in the same place because the environment at

these points are very similar. When the system was tested with the same condition but different

route, the same thing happened at the point where the environment at the point is very similar

to the environment at a different point that the device has already passed. Even though the

system recognized the position of the device wrong, it tracked the device movement correctly

throughout the testing.

After the first test, three markers (Marker 2, 3 and 4 in figure 8.4) were placed and tested again.

The tracking result is shown in figure 8.4 and the screenshots taken at the numbered points on

83

Figure 8.2: Tracking without markers

(a) 3 (b) 5 (c) 5

Figure 8.3: Screenshots at the blue number 3, 5 and the red number 5

84

the map are provided in Appendix D. The numbers with yellow colour are the positions when

the device scans markers.

Figure 8.4: Tracking with markers

It can be seen that the tracking drifts to the left hand side after repositioning with markers. This

can be caused by the problem in the code where the system calculates the angle of the device

when scanning a marker, however, the solution to this could not be found. The interesting point

from this result is that although the positioning of the device is done in the same way with the

initial marker and other markers, the drift did not occur for the first marker.

8.3 Requirements Testing

Next, testing was carried out to check that the system meets the requirements. The developed

system was tested against the requirements listed in section 5.3.1. The testing was planned by

providing the preconditions/dependencies, expected inputs and expected outcomes for testing

each requirement. The device screen was recorded during the testing and the screenshots were

taken to provide evidences for the tests. The essential requirements were tested after the main

85

implementation was completed. After all of the tests for the essential requirements passed, the

additional implementation was carried out and desirable requirements were tested. FR 2.4, 2.5,

2.6 and 2.7 were not covered by the system due to the time constraints and hardware limitations.

8.3.1 Functional Requirements

• Essential Requirements

Test 1
Requirement FR 1.1 The system shall access the device’s camera and display

the camera image on the screen.
Preconditions/

Dependencies

The app is installed on the device.

Expected Input Launch the app.
Expected Outcome The system displays the camera image and a text to ask for scan-

ning a marker on the screen.
Actual Outcome The system displayed the camera image and the text.
Evidence

Test Result Passed.

86

Test 2
Requirement FR 1.2 The system shall allow a user to scan a marker.

FR 1.3 The system shall display a 2D mini map.
FR 1.4 The system shall display a sphere on the 2D mini map to

indicate the current location of the device.
FR 1.6 The system shall display a button to display a list of

destinations.
Preconditions/

Dependencies

The system is displaying the camera image on the screen.

Expected Input Move the device so that a marker appears in the camera view.
Expected Outcome The system displays a 2D mini map with a sphere and a drop-

down for selecting a destination on the screen.
Actual Outcome The system displayed a 2D mini map with a sphere and a drop-

down for selecting a destination on the screen.
Evidence

Test Result Passed.

87

Test 3
Requirement FR 1.5 The system shall track the device movement and update

the sphere position on the 2D mini map.
Preconditions/

Dependencies

The system is displaying the mini map and a sphere on the map.

Expected Input Move the device.
Expected Outcome The sphere on the map moves according to the device movement

and the map rotates based on the device orientation.
Actual Outcome The sphere on the map moved according to the device movement

and the map rotated based on the device orientation in real time.
Evidence

Test Result Passed.

88

Test 4
Requirement FR 1.7 The system shall display a destination list.
Preconditions/

Dependencies

The system is displaying the drop-down on the screen.

Expected Input Touch the drop-down.
Expected Outcome The system shows a list of destinations.
Actual Outcome The system showed a list of destinations.
Evidence

Test Result Passed.

89

Test 5
Requirement FR 1.8 The system shall allow user to select a destination from

the list.
FR 1.9 The system shall calculate the optimal path from the

current location of the device to the selected destination.
FR 1.10 The system shall show the calculated path on the 2D

mini map.
FR 1.11 The system shall show the direction in 3D environment

using AR objects.
Preconditions/

Dependencies

The system is displaying a list of destinations on the screen.

Expected Input Select a destination from the list.
Expected Outcome The system displays a selected destination name as a caption of

the drop-down, the optimal path on the mini map and a 3D arrow

that points at the direction to the destination in 3D space.
Actual Outcome The system displayed a selected destination name as a caption

of the drop-down, the optimal path on the mini map and a 3D

arrow that points at the direction to the destination in 3D space.
Evidence

Test Result Passed.

90

Test 6
Requirement FR 1.12 The system shall calculate the optimal path from the cur-

rent location of the device to the destination in real time through-

out the navigation process.
FR 1.13 The system shall update the path on the 2D mini map

in real time.
FR 1.14 The system shall update the direction in 3D environment

in real time.
Preconditions/

Dependencies

The system is displaying the optimal path on the mini map and

the arrow in the 3D environment.
Expected Input Move the device.
Expected Outcome The system updates the line on the map to show the optimal

path from the current location to the selected destination and

the rotation of the arrow so that it points at the direction to the

selected destination in real time.
Actual Outcome The system updated the line on the map to show the optimal

path from the current location to the selected destination and

the rotation of the arrow so that it points at the direction to the

selected destination in real time.
Evidence

Test Result Passed.

91

Test 7
Requirement FR 1.15 The system shall indicate the selected destination in 3D

environment with an AR object.
Preconditions/

Dependencies

A destination is selected.

Expected Input Move the device so that the destination point is in the camera

view.
Expected Outcome The system displays a 3D icon at the destination point in the 3D

environment.
Actual Outcome The system displayed a 3D icon at the destination point in the

3D environment.
Evidence

Test Result Passed.

92

Test 8
Requirement FR 1.16 The system shall allow user to scan markers to reposition

the current location while walking to the destination.
Preconditions/

Dependencies

The system is displaying the camera image on the screen.

Expected Input Scan a marker.
Expected Outcome The system moves the sphere on the map to the position of the

scanned marker.
Actual Outcome The system moved the sphere on the map to the position of the

scanned marker.
Evidence

A screenshot before scanning the marker on the left and a screen-

shot after scanning the marker on the right.
Test Result Passed.

93

• Desirable Requirements

Test 9
Requirement FR 2.1 The system shall display distances from the current loca-

tion to the destinations on the destination list.
Preconditions/

Dependencies

The system is displaying the drop-down on the screen.

Expected Input Touch the drop-down.
Expected Outcome The system displays the distances from the current location to

each destination in the list.
Actual Outcome The system displayed the distances next to each destination

name. However, the texts in the list cannot be updated when

the list is showing so the distances to each destination when the

list is displayed are shown.
Evidence

A screenshot before selecting a destination on the left and a

screenshot after selecting a destination on the right. The dis-

tance to KITCHEN shown in the list (3.72m) is different from

the distance shown next to the caption text (3.69m) because the

texts in the list are not updated in real time.
Test Result Partially Passed.

94

Test 10
Requirement FR 2.2 The system shall display the remaining distance to the

destination during the navigation process.
Preconditions/

Dependencies

A destination is selected.

Expected Input Move the device.
Expected Outcome The system displays the remaining distance from the current po-

sition to the selected destination point and update it in real time.
Actual Outcome The system displayed the remaining distance from the current

position to the selected destination point and updated it in real

time.
Evidence

The remaining distance is displayed next to the destination name

at the top right corner.
Test Result Passed.

95

Test 11
Requirement FR 2.3 The system shall allow user to zoom in and out the 2D

mini map.
Preconditions/

Dependencies

The 2D mini map is displayed.

Expected Input Touch the map on the screen with two fingers and bring the fingers

together or spread them apart while touching the screen.
Expected Outcome The system displays the map farther as the two fingers get closer

and nearer as the two fingers get farther.
Actual Outcome The system displayed the map father and closer according to the

fingers’ movement.
Evidence

A screenshot when zooming out on the left and zooming in on

the right.
Test Result Passed.

96

Test 12
Requirement FR2.4 The system shall allow user to select a destination on the

2D map.
Preconditions/

Dependencies

The map is displayed.

Expected Input Touch a point on the map.
Expected Outcome The system displays the optimal path from the current position

to the selected point on the mini map and a 3D arrow that points

at the direction to the selected point in the 3D space
Actual Outcome None.
Evidence N/A
Test Result Failed.

Test 13
Requirement FR2.5 The system shall display virtual descriptions of the places

at the destinations using AR objects.
Preconditions/

Dependencies

A destination is selected.

Expected Input Move the device so that the destination point is in the camera

view.
Expected Outcome The system displays virtual descriptions at the destination point

in the 3D environment.
Actual Outcome Only the 3D icon is shown at the destination point.
Evidence N/A
Test Result Failed.

Test 14
Requirement FR2.6 The system shall show the navigation line in 3D environ-

ment.
Preconditions/

Dependencies

The system is displaying a list of destinations on the screen.

Expected Input Select a destination from the list.
Expected Outcome The system displays a navigation line in 3D environment.
Actual Outcome The system displays the 3D arrow instead of the navigation line.
Evidence N/A
Test Result Failed.

97

Test 15
Requirement FR2.7 The system shall show the direction in 3D environment

using an animated character.
Preconditions/

Dependencies

The system is displaying a list of destinations on the screen.

Expected Input Select a destination from the list.
Expected Outcome The system displays an animation character that navigates the

user to the selected destination in 3D environment.
Actual Outcome The system displays the 3D arrow instead of the navigation line.
Evidence N/A
Test Result Failed.

98

8.3.2 Non-functional Requirements

Test 16
Requirement NFR 1 The system shall run on any ARCore supported Android

devices.
Preconditions/

Dependencies

There are multiple ARCore supported Android devices.

Expected Input Launch the app on the different devices.
Expected Outcome The system runs successfully on every device.
Actual Outcome This could not be tested as there is only one ARCore supported

Android device available for this project. However, the libraries

used for the system support all the ARCore supported Android

devices so it can be assumed that the system can run on any of

these devices.
Evidence N/A
Test Result Expected to pass.

Test 17
Requirement NFR 2 The system shall respond within at most 3 seconds of a

user interaction.
Preconditions/

Dependencies

The system is running on an Android device with good condition.

Expected Input Try all available user interactions.
Expected Outcome All the responses are within 3 seconds.
Actual Outcome All the responses were within 3 seconds.
Evidence The screen recording for testing other requirements can be the

evidence for this test.
Test Result Passed.

99

Test 18
Requirement NFR 3 The system shall respond to the size of the device screen.
Preconditions/

Dependencies

There are multiple ARCore supported Android devices.

Expected Input Run the system on the devices with different screen sizes.
Expected Outcome The contents on the screen are adapted to the screen size.
Actual Outcome Instead of testing with different Android devices, it was tested

by changing the aspect ratio of the game view on Unity because

there is only one ARCore supported Android device available for

this project. The contents on the screen were adapted to the

screen size.
Evidence

The screenshots of the game view on Unity with the aspect ratio

of 800x480 on the left and 1280x720 on the right.
Test Result Expected to pass.

100

8.4 Evaluation

As the results of the performance testing show, the tracking did not work perfectly as expected.

As mentioned earlier, when the camera detects an environment that is similar to the one that

already detected previously, the system recognizes that these two environments are the same.

Therefore, the system moves the position of the device to the previous point. If the navigation

area does not have any points that are similar, the system is expected to track the device

correctly as the system tracked the device movement correctly throughout the testing. However,

campus buildings usually have a lot of similar points so this problem must be solved before

deploying the system in campus buildings.

One of the solutions is to use markers to reposition the device location when the tracking goes

wrong. Tracking with repositioning using markers was tested in the second part of the perfor-

mance testing. As can be seen from the result, the system successfully repositioned the device

location by scanning markers. However, the tracking shifted slightly to the left after scanning

the markers. The cause of the problem could not be found but it is likely to be something with

the implementation as tracking after scanning the first marker is working correctly. If this can

be fixed, the system can track the device correctly and continuously.

During the requirement testing, the user was successfully navigated from the entrance of the

accommodation to the shower room. Overall, most of the requirements tests passed and those

ones that failed are not essential requirements so it can be said that the system development

has been successfully completed.

During the testing, the device had to be moved slowly because the position and orientation of the

device would be tracked wrongly if the device is moved very quickly or shaken. There should be

a very few chance that a user moves the device very fast during navigation so it is not considered

as a big problem for this project. The navigation can be started at any location if the current

location is initialized, in other words, the device has scanned a marker. However, the location

can be initialized only at the places where the markers are placed. Therefore, many markers are

required to enable users to use the navigation system at various places. It is expected that the

system works in different environments, such as larger areas and more complex buildings, but

this could not be tested due to the pandemic situation.

101

Chapter 9

Legal, Social, Ethical and Professional

issues

9.1 Introduction

SAGE self-check has been completed for this project and my responses to the SAGE form

has been attached to this dissertation as Appendix E. As this project does not involve any

of the higher, medium and lower risks, it does not require full ethics review. However, there

are still ethical issues to consider. In this chapter, the legal, social, ethical and professional

considerations of the current project will be discussed to ensure that the project is carried out

according to the relevant code of conducts, such as the ACM Code of Ethics and Professional

Conduct (ACM 2021) and the BCS Code of Conduct (BCS 2021).

9.2 Legal issues

The legal issues must be considered to ensure the work of the project is carried out according to

legal principles. The aim of this project is to develop an application which is used at universities

in the UK so this project must comply with the UK laws.

The Computer Misuse Act 1990 (CMA) is a legislation to make provision for securing computer

material against unauthorised access, unauthorised access with intent to commit or facilitate

commission of further offences and unauthorised modification. To ensure the system developed

for this project does not conflict with this act, I made sure that the system does not contain any

102

functionality that can perform unauthorised access or modification to any programs or data.

Also, the system does not contain any hidden functions with intent to perform a malicious act

that is not indicated in the system requirement.

Confidentiality of data is a principle that must be considered. The Data Protection Act 2018

(DPA) is a UK law that controls how personal information is used by organisations, businesses

or the government. DPA states that any personal data must be processed or stored according

to strict rules. However, there are no sensitive data used for the system so this principle does

not apply for this project. Sensor data from mobile phones, such as IMU and camera images,

are used but it does not relate to and is capable of identifying a living person. Furthermore, any

data collected from mobile phones are not stored in the system.

Any information from research papers, articles and websites used in this project are rephrased

or summarized and referenced to avoid plagiarism. Any tools and libraries used for the imple-

mentation are open source and these were referenced to prevent copyright issues. The floor plan

of the campus accommodation is used for the system but there is no copyright issue because the

use of the floor plan was permitted by appropriate authorities.

9.3 Social issues

Considering social issues resulted by the project is important to ensure that it will be used in

socially responsible ways and it will not cause any harmful effects to human well-being. The

aim of this project is to help people finding a way in complex campus buildings, which should

provide a benefit to the society. Having a navigation system at the buildings with complicated

structures would reduce the stress of looking for a destination and it would help students and

staff to manage their time. As the system uses AR, it can avoid the accidents that can be caused

by looking at a map while walking. The project has no intent of harming human rights, health

and safety and the system developed for the project does not contain any functions that cause

negative consequences on society.

103

9.4 Ethical issues

The goal of the project is to develop an application to help people so it does not have any

intention to harm public well being. There is a possibility that using a smartphone for a long

time affects public health. However, the system developed for this project is for navigating

a user to a destination indoor which would not take long and it does not require the user to

concentrate on the device screen so there should not be a huge impact of the system on public

health. Identifying people’s location and tracking people’s movement can cause a privacy issue.

Using the recent technologies, it is possible to extract personal information from location data.

However, no data is collected and stored by the system developed for this project so it does not

cause any issues for public privacy and security. There was no activity that caused discrimination

on the grounds of sex, sexual orientation, marital status, nationality, colour, race, ethnic origin,

religion, age or disability during this project. The application can be easily used by people from

all sectors in society.

The request for an informed consent is not applicable for this project because this project does

not involve any active participation of human subjects.

9.5 Professional issues

In-depth research was carried out at the beginning of this project to be familiar with the recent

technologies and develop my professional knowledge relevant to the project and any works in

this projects were planned and undertaken within my professional competence. As mentioned

in section 9.2, any works for this project was undertaken to comply with legislation. Activities

during this project did not include any practices that impose a risk of serious harm on people,

properties or reputation. These comply with statements under the Professional Competence

and Integrity section in BSC Code of Conduct. Before testing the developed system in the

campus accommodation, I have contacted the accommodation warden in a professional manner

and received a permission to conduct the test.

104

Chapter 10

Conclusions and Future Work

10.1 Overview

The initial aim of this project was to explore various approaches for indoor positioning and

tracking using Augmented Reality and design and implement an AR indoor navigation mobile

application for campus buildings, which can be used by students, staffs and visitors. In the first

part of this project, an in-depth research into the key elements of AR indoor navigation was

conducted. The research was applied to design a new navigation system in campus buildings

and the new application was developed, tested and evaluated. Although the application was

implemented for campus accommodation, it can be easily adjusted to be used in the campus

buildings.

10.2 Conclusions

In this section, the list of objectives that was defined in section 1.2 is evaluated in detail to

demonstrate the success of this project.

• Review literature that is relevant to this project.

This objective has been achieved by completing the literature review. A wide range of re-

search papers and other materials relevant to this project were reviewed at the beginning

of the project. Different technologies that can be used for the project were introduced and

compared in chapter 2. It first introduced the AR including the marker-based and mark-

105

erless AR and variety of AR devices. Then, the different approaches for enabling indoor

navigation were introduced in terms of indoor positioning and tracking and pathfinding.

Finally, some of the current AR indoor navigation systems were introduced.

• Analyse current solutions and define requirements for this project.

This objective has been achieved by identifying the approach for the implementation and

defining the system requirements and specifications. By evaluating the different tech-

nologies introduced in chapter 2, the best approach for implementing a new AR indoor

navigation system for campus buildings was decided in chapter 4 and the requirements

and specifications for the system were defined in chapter 5.

• Develop a proof of concept to demonstrate the feasibility and identify potential issues that

might interfere with the indoor navigation system using AR.

This objective has been achieved by designing, implementing and testing a proof of concept

system for navigation in campus buildings using the AR. The system was designed based on

the requirements defined in chapter 5. A use case diagram with descriptions were created to

describe the basic actions the system should take. User interface of the system was designed

and different development tools were explored before the implementation. After designing

the system, the system was implemented according to the design. Different approaches

were tried during the implementation to make sure the system meets the requirements as

mentioned in chapter 7. As can be seen in chapter 8, although the performance of the

tracking was not perfect, the system that meets all the essential requirements has been

successfully implemented.

• Evaluate the new implemented app and provide recommendations for future works.

The findings from the development of the proof of concept for the AR indoor navigation

in campus buildings were evaluated in section 8.4. The improvement that can be made in

the future will be discussed in the next section.

Overall, the project can be considered successful due to the fact that the aim and objectives

are fully met. Although the implemented system did not perform perfectly, it did meet all the

essential requirements and some of the desirable requirements. To conclude, the project has

shown the positive effects of using Augmented Reality for indoor navigation system.

106

10.3 Future Work

Although the new system was successfully implemented, it is only a proof of concept to demon-

strate the feasibility and functionality of indoor navigation system using AR. There are many

improvements that can be made on the implemented functionalities.

Due to the time constraints and hardware limitations, some of the desirable functional require-

ments were not covered in this project. Enabling more user controls on the mini map and

allowing the user to select a destination on the map would be very useful, especially when there

are destination points with similar names. Displaying a description at the destination point and

using a navigation line or a virtual character for navigation would also be useful as described in

chapter 4.

Additionally to the functions stated in the system requirements, there are many functionalities

that can be added to the system. The developed system only supports a single map. Supporting

multiple floors and multiple maps would improve the functionality of the system. Another feature

which could be implemented is the ability to create new maps within the system. The current

system only provides navigation in a specific location that has been prepared beforehand. By

enabling users to create their own map by uploading a floor plan and setting marker locations

and destination points, the usability of the system can be improved. However, it is only possible

if the generation of navigation mesh can be automated. Navigation can be more entertaining

by adding more features. For example, a stamp card feature that users can collect stamps at

different locations. This would allow people to explore campus buildings more and applicants

to enjoy looking around on campus on a open day. Enabling users to place objects or draw

something in the environment that can be shared with other users would be a interesting feature.

As well as adding more functions to the system, some improvements can be made to the current

functionalities. The tracking after scanning markers did not work perfectly, which should be

fixed in the future. If the problem with recognizing the similar places with similar environments

as the same place can be fixed, the times the user has to scan markers during navigation can be

reduced. This improves the user experience and preparation effort. Using things that already

exist in the navigation area as markers can get rid of the initial preparation to install markers.

Door signs can be used as markers if the system can detect texts from camera images.

107

10.4 Academic Contributions

Some of the techniques and knowledge used for this project are gained from modules studied

during the BSc Computer Science course at the University of Surrey and the exchange study

at the Hong Kong Polytechnic University. The followings is a list of the most relevant modules

and descriptions of how the contents of the modules applied to this project.

• COM1028 Software Engineering & COMP3211 Software Engineering

These module provided an introduction to the principles of software engineering including

an overview of the systems development life cycle, agile methods and common approaches

employed to develop software. The aspects on requirements specification, design, imple-

mentation and testing covered by these modules were very useful throughout this project.

• COMP4122 Game Design and Development

The knowledge and skills to analyse, design and develop interactive computer games and

virtual reality applications provided by this module could be applied to this project when

analysing the existing applications and developing the new system. This module demon-

strated the use of Unity with C# which was used for implementing the new system.

• COMP4422 Computer Graphics

This module covered the concepts of 3D modeling, design and visualization and demon-

strated the use of Blender. The skills and knowledge gained from this module were used

successfully to create 3D objects for the navigation in the 3D space.

• Professional Training

In addition to the modules mentioned above, the experience in working in the industry

during the Professional Training Year improved the skills required to work on a project,

such as problem solving and time management skills.

10.5 Personal Development

Although the project was completed in time, it did not process as initially planned. It was my

first time to do a project for a long period of time so it was difficult to manage time at the

beginning of this project. Also, I did not have any knowledge or experiences with AR so it

108

took time to do a research and I struggled with implementation. I have not done many writing

assignments before and I am not a native English speaker so it took time for me to write each

part of this dissertation.

However, I successfully adjusted the plan at the middle of this project to complete it before

the deadline. I managed to improve my concentration by splitting tasks into small pieces and

scheduling these in details. This allowed me to complete my dissertation earlier and provided a

time to review my work before the submission.

I gained a lot of knowledge about Augmented Reality and indoor navigation from my research

during this project. I only had a basic knowledge about Unity before working on this project

but I learnt more through this project. I also gained an experience in working with Git and

GitHub from this project. During this project, I have improved not only my technical skills but

also my time management and project management skills. Working on my dissertation helped

me to gain writing and research skills.

10.6 Final Statement

Unfortunately, there were limitations during the project due to the pandemic. There are many

things that could be done if not for this situation. For example, the system could be tested

at different locations, like buildings with different size and complexity, to see how the system

performs in different environments. Also, it could be tested by a variety of people to check how

they find about the navigation system in the 3D space compared to current 2D map applications.

The non-functional requirements that were not be tested due to the hardware constraints could

be tested using University’s hardware in a normal situation.

Despite the situation, this project successfully provided a lot of information about the technolo-

gies that can be used for indoor navigation and how it can be improved by using Augmented

Reality. The system was developed to be used in campus buildings but it can be used in other

locations, such as museums and event venues.

109

Appendix A

Gantt Chart

The Gantt chart is attached on the following page.

110

111

Appendix B

Floor Plan

112

Appendix C

Screenshots of the Performance Testing

without Markers

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 5 (g) 6 (h) 7 (i) 8 (j) 9

113

Appendix D

Screenshots of the Performance Testing

with Markers

The screenshots are attached on the following page.

114

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

(f) 5 (g) 5 (h) 6 (i) 7 (j) 7

(k) 8 (l) 9 (m) 9

115

Appendix E

SAGE Form

My responses to the SAGE form is attached on the following pages.

116

1	/	9

SAGE-HDR

Response	ID Completion	date

640816-640807-74860061 27	Mar	2021,	16:02	(GMT)

1 Applicant	Name Rina	Fumoto

1.a University	of	Surrey
email	address

rf00302@surrey.ac.uk

1.b Level	of	research Undergraduate

1.b.i Please	enter	your
University	of	Surrey
supervisor's	name.	If	you
have	more	than	one
supervisor,	enter	the
details	of	the	individual
who	will	check	this
submission.

Andrew	Crossan

1.b.ii Please	enter	your
supervisor's	University
of	Surrey	email	address.
If	you	have	more	than
one	supervisor,	enter	the
details	of	the	supervisor
who	will	check	this
submission.

a.crossan@surrey.ac.uk

1.c School	or	Department Computer	Science

1.d Faculty FEPS	-	Faculty	of	Engineering	and
Physical	Sciences	Sciences

2	/	9

2 Project	title AR	INDOOR	NAVIGATION	FOR
CAMPUS	BUILDINGS

3 Please	enter	a	brief
summary	of	your	project
and	its	methodology	in
250	words.	Please
include	information	such
as	your	research
method/s,	sample,	where
your	research	will	be
conducted	and	an
overview	of	the	aims	and
objectives	of	your
research.

The	overall	aim	of	this	research	project	is
to	explore	various	approaches	for	indoor
positioning	and	tracking	using	augmented
reality	and	design	and	implement	an	AR
indoor	navigation	mobile	application	for
campus	buildings,	which	can	be	used	by
students,	staffs	and	visitors.	The
application	will	be	implemented	and	tested
at	a	student	accommodation	on	University
of	Surrey	Stag	Hill	campus.

4 Are	you	making	an
amendment	to	a	project
with	a	current	University
of	Surrey	favourable
ethical	opinion	in	place?

NO

5 Does	your	research
involve	any	animals,
animal	data	or	animal
derived	tissue,	including
cell	lines?

NO

3	/	9

7 Does	your	project
involve	any	of	the
following:	human
participants	(including
human	data	and/or	any
human	tissue*);	or	is
your	project	linked	to
engineering	and/or	the
physical	sciences?

YES

13 Does	your	project
involve	any	type	of
human	tissue	research?
This	includes	Human
Tissue	Authority	(HTA)
relevant,	or	irrelevant
tissue	(e.g.	non-cellular
such	as	plasma	or
serum),	any	genetic
material,	samples	that
have	been	previously
collected,	samples	being
collected	directly	from
the	donor	or	obtained
from	another	researcher,
organisation	or
commercial	source.

NO

4	/	9

14 Does	your	research
involve	exposure	of
participants	to	any
hazardous	materials	e.g.
chemicals,	pathogens,
biological	agents	or	does
it	involve	any	activities	or
locations	that	may	pose
a	risk	of	harm	to	the
researcher	or
participant?

NO

15 Will	any	activities	in	your
research	take	place	in
the	Surrey	Clinical
Research	Building
(CRB)?

NO

16 Will	you	be	accessing
any	organisations,
facilities	or	areas	that
may	require	prior
permission?	This
includes	organisations
such	as	schools
(Headteacher
authorisation),	care
homes	(manager
permission),	military
facilities	etc.	If	you	are
unsure,	please	contact
RIGO.

NO

5	/	9

17 Will	you	be	working	with
any	collaborators	or	third
parties	to	deliver	any
aspect	of	the	research
project?

NO

18 Is	your	project	a	service
evaluation	or	an	audit?

NO

19 Does	your	funder,
collaborator	or	other
stakeholder	require	a
mandatory	ethics	review
to	take	place	at	the
University	of	Surrey?

NO

20 Are	you	undertaking
security-sensitive
research,	as	defined	in
the	text	above?

NO

6	/	9

21 Does	your	project
process	personal	data1?
Processing	covers	any
activity	performed	with
personal	data,	whether
digitally	or	using	other
formats,	and	includes
contacting,	collecting,
recording,	organising,
viewing,	structuring,
storing,	adapting,
transferring,	altering,
retrieving,	consulting,
marketing,	using,
disclosing,	transmitting,
communicating,
disseminating,	making
available,	aligning,
analysing,	combining,
restricting,	erasing,
archiving,	destroying.

NO

22 Does	your	project
require	the	processing	of
special	category2	data?

NO

23 Are	you	using	a	platform,
system	or	server³	that	is
external	to	the	University
of	Surrey	to	collect,
process	and/or	store	any
personal	and/or	special
category	data?

NO

7	/	9

24 Does	your	research
involve	any	of	the	above
statements?	If	yes,	your
study	may	require
external	ethical	review	or
regulatory	approval

NO

25 Does	your	research
involve	any	of	the
above?	If	yes,	your	study
may	require	external
ethical	review	or
regulatory	approval

NO

26 Does	your	project
require	ethics	review
from	another	institution?
(For	example:
collaborative	research
with	the	NHS	REC,	the
Ministry	of	Defence,	the
Ministry	of	Justice	and/or
other	universities	in	the
UK	or	abroad)

NO

30 Declarations I	confirm	that	I	have	read	the
University’s	Code	on	Good	Research
Practice	and	ethics	policy	and	all
relevant	professional	and	regulatory
guidelines	applicable	to	my	research
and	that	I	will	conduct	my	research	in
accordance	with	these.
I	confirm	that	I	have	provided	accurate
and	complete	information	regarding	my
research	project
I	understand	that	a	false	declaration	or

8	/	9

providing	misleading	information	will	be
considered	potential	research
misconduct	resulting	in	a	formal
investigation	and	subsequent
disciplinary	proceedings	liable	for
reporting	to	external	bodies
I	understand	that	if	my	answers	to	this
form	have	indicated	that	I	must	submit
an	ethics	and	governance	application,
that	I	will	NOT	commence	my	research
until	a	Favourable	Ethical	Opinion	is
issued	and	governance	checks	are
cleared.	If	I	do	so,	this	will	be
considered	research	misconduct	and
result	in	a	formal	investigation	and
subsequent	disciplinary	proceedings
liable	for	reporting	to	external	bodies.
I	understand	that	if	I	have	selected	any
options	on	the	higher,	medium	or	lower
risk	criteria	then	I	MUST	submit	an
ethics	and	governance	application
(EGA)	for	review	before	conducting	any
research.	If	I	have	NOT	selected	any	of
the	higher,	medium	or	lower	risk	criteria,
I	understand	I	can	proceed	with	my
research	without	review	and
acknowledge	that	my	SAGE	answers
and	research	project	will	be	subject	to
audit	and	inspection	by	the	RIGO	team
at	a	later	date	to	check	compliance

9	/	9

31 If	I	am	conducting
research	as	a	student:

I	confirm	that	I	have	discussed	my
responses	to	the	questions	on	this	form
with	my	supervisor	to	ensure	they	are
correct.
I	confirm	that	if	I	am	handling	any
information	that	can	identify	people,
such	as	names,	email	addresses	or
audio/video	recordings	and	images,	I
will	adhere	to	the	security	requirements
set	out	in	the	relevant	Data	protection
Policy

Bibliography

Abd Algfoor, Z., Sunar, M. S. & Kolivand, H. (2015), ‘A comprehensive study on pathfind-

ing techniques for robotics and video games’, International Journal of Computer Games

Technology 2015.

ACM (2021), ‘Acm code of ethics and professional conduct’.

URL: https://www.acm.org/code-of-ethics

Apple (2016), ‘Apple maps’.

URL: https://apps.apple.com/us/app/apple-maps/id915056765

Apple Inc. (2021), ‘Arkit - augmented reality’.

URL: https://developer.apple.com/augmented-reality/arkit/

Arty (2017), ‘Augmented reality app for interior design’.

URL: https://myty.app/en

Augmented City (2021), ‘Ac tourist - augmented.city: Ar cloud & platform’.

URL: https://www.augmented.city/ac-tourist

Ayatsuka, Y. & Rekimoto, J. (2006), Active cybercode: a directly controllable 2d code, in

‘CHI’06 Extended Abstracts on Human Factors in Computing Systems’, pp. 490–495.

BCS (2021), ‘Bcs code of conduct’.

URL: https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Gren-

ning, J., Highsmith, J., Hunt, A., Jeffries, R. et al. (2001), ‘Manifesto for agile software

development’.

126

https://www.acm.org/code-of-ethics
https://apps.apple.com/us/app/apple-maps/id915056765
https://developer.apple.com/augmented-reality/arkit/
https://myty.app/en
https://www.augmented.city/ac-tourist
https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf

Bekkali, A., Sanson, H. & Matsumoto, M. (2007), Rfid indoor positioning based on probabilistic

rfid map and kalman filtering, in ‘Third IEEE International Conference on Wireless and

Mobile Computing, Networking and Communications (WiMob 2007)’, IEEE, pp. 21–21.

Benko, H., Wilson, A. D. & Zannier, F. (2014), Dyadic projected spatial augmented reality, in

‘Proceedings of the 27th annual ACM symposium on User interface software and technol-

ogy’, pp. 645–655.

Blender Foundation (2021), ‘Home of the blender project - free and open 3d creation software’.

URL: https://www.blender.org/

Boulanger, P. (2004), Application of augmented reality to industrial tele-training, in ‘First

Canadian Conference on Computer and Robot Vision, 2004. Proceedings.’, IEEE, pp. 320–

328.

Brand, S. (2009), ‘Efficient obstacle avoidance using autonomously generated navigation meshes’.

Chen, L., Xie, X., Lin, L., Wang, B. & Lin, W. (2020), Research on smart navigation system

based on ar technology, in ‘Fifth International Workshop on Pattern Recognition’, Vol.

11526, International Society for Optics and Photonics, p. 115260J.

Committee, I. C. S. S. E. S. & Board, I.-S. S. (1998), ‘Ieee recommended practice for software

requirements specifications’, 830(1998).

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2009), Introduction to algorithms,

MIT press.

Cui, X. & Shi, H. (2011), ‘A*-based pathfinding in modern computer games’, International

Journal of Computer Science and Network Security 11(1), 125–130.

Cutolo, F., Cattari, N., Fontana, U. & Ferrari, V. (2020), ‘Optical see-through head-mounted

displays with short focal distance: Conditions for mitigating parallax-related registration

error’, Frontiers in Robotics and AI 7, 196.

Dijkstra, E. W. et al. (1959), ‘A note on two problems in connexion with graphs’, Numerische

mathematik 1(1), 269–271.

Epic Games, Inc. (2012), ‘Navigation mesh reference’.

URL: https://docs.unrealengine.com/udk/Three/NavigationMeshReference.html

127

https://www.blender.org/
https://docs.unrealengine.com/udk/Three/NavigationMeshReference.html

Epson (2021a), ‘Moverio bt-300’.

URL: https://www.epson.co.uk/products/see-through-mobile-viewer/

moverio-bt-300/

Epson (2021b), ‘Uses for moverio smart glasses’.

URL: https://epson.com/moverio-augmented-reality-smart-glasses-experiences-use-cases

Fiala, M. (2005a), Artag, a fiducial marker system using digital techniques, in ‘2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)’,

Vol. 2, IEEE, pp. 590–596.

Fiala, M. (2005b), Comparing artag and artoolkit plus fiducial marker systems, in ‘IEEE Inter-

national Workshop on Haptic Audio Visual Environments and their Applications’, IEEE,

pp. 6–pp.

Fiala, M. (2009), ‘Designing highly reliable fiducial markers’, IEEE Transactions on Pattern

analysis and machine intelligence 32(7), 1317–1324.

Flohr, D. & Fischer, J. (2007), ‘A lightweight id-based extension for marker tracking systems’.

Furht, B. (2011), Handbook of augmented reality, Springer Science & Business Media.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J. & Marín-Jiménez, M. J. (2014),

‘Automatic generation and detection of highly reliable fiducial markers under occlusion’,

Pattern Recognition 47(6), 2280–2292.

Gatwick Airport Limited (2017), ‘Gatwick installs 2000 indoor navigation beacons enabling

augmented reality wayfinding – a world first for an airport’.

URL: http://www.mediacentre.gatwickairport.com/press-releases/2017/17_05_

25_beacons.aspx

Golodetz, S. (2013), ‘Automatic navigation mesh generation in configuration space’, Overload

Journal .

Google (2020), ‘Arcore overview | google developers’.

URL: https://developers.google.com/ar/discover/

Google (2021a), ‘Arcore supported devices | google developers’.

URL: https://developers.google.com/ar/discover/supported-devices

128

https://www.epson.co.uk/products/see-through-mobile-viewer/moverio-bt-300/
https://www.epson.co.uk/products/see-through-mobile-viewer/moverio-bt-300/
https://epson.com/moverio-augmented-reality-smart-glasses-experiences-use-cases
http://www.mediacentre.gatwickairport.com/press-releases/2017/17_05_25_beacons.aspx
http://www.mediacentre.gatwickairport.com/press-releases/2017/17_05_25_beacons.aspx
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/supported-devices

Google (2021b), ‘Augmented images for ar foundation | arcore | google developers’.

URL: https://developers.google.com/ar/develop/unity-arf/augmented-images

Google (2021c), ‘Glass – glass’.

URL: https://www.google.com/glass/start/

Google (2021d), ‘Google maps - navigate & explore – apps on google play’.

URL: https://play.google.com/store/apps/details?id=com.google.android.apps.

maps&hl=en_GB&gl=US

Graham, R., McCabe, H. & Sheridan, S. (2003), ‘Pathfinding in computer games’, The ITB

Journal 4(2), 6.

GuidiGO, Inc. (2021).

URL: https://www.guidigo.com/ar

Haque, R., Islam, M. M., Salma, S., Al Jubair, M. A. & Weng, N. G. (2020), Extracting

relevant information using handheld augmented reality, in ‘Proceedings of the International

Conference on Computing Advancements’, pp. 1–6.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968), ‘A formal basis for the heuristic determination

of minimum cost paths’, IEEE transactions on Systems Science and Cybernetics 4(2), 100–

107.

Hirzer, M. (2008), Marker detection for augmented reality applications, in ‘Seminar/Project

Image Analysis Graz’, Vol. 25.

HITLab (n.d.), ‘Virtual retinal display (vrd) group’.

URL: http://www.hitl.washington.edu/projects/vrd/

Inman, R. (2019), ‘Take off to your next destination with google maps’.

URL: https://blog.google/products/maps/take-your-next-destination-google-maps/

Ishikawa, T., Fujiwara, H., Imai, O. & Okabe, A. (2008), ‘Wayfinding with a gps-based mobile

navigation system: A comparison with maps and direct experience’, Journal of environ-

mental psychology 28(1), 74–82.

Jin, Y., Seo, J., Lee, J. G., Ahn, S. & Han, S. (2020), ‘Bim-based spatial augmented reality (sar)

for architectural design collaboration: A proof of concept’, Applied Sciences 10(17), 5915.

129

https://developers.google.com/ar/develop/unity-arf/augmented-images
https://www.google.com/glass/start/
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en_GB&gl=US
https://play.google.com/store/apps/details?id=com.google.android.apps.maps&hl=en_GB&gl=US
https://www.guidigo.com/ar
http://www.hitl.washington.edu/projects/vrd/
https://blog.google/products/maps/take-your-next-destination-google-maps/

Jumarlis, M. & Mirfan, M. (2018), ‘Implementation of markerless augmented reality technology

based on android to introduction lontara in marine society’, 156(1), 012017.

Kallmann, M. & Kapadia, M. (2016), ‘Geometric and discrete path planning for interactive

virtual worlds’, Synthesis Lectures on Visual Computing: Computer Graphics, Animation,

Computational Photography, and Imaging 8(1), 1–201.

Kaltenbrunner, M. & Bencina, R. (2007), reactivision: a computer-vision framework for table-

based tangible interaction, in ‘Proceedings of the 1st international conference on Tangible

and embedded interaction’, pp. 69–74.

Kang, S.-H. & Tesar, D. (2004), Indoor gps metrology system with 3d probe for precision

applications, in ‘Proceedings of ASME IMECE 2004 International Mechanical Engineering

Congress and RD&D Expo’, Citeseer.

Kato, H. & Billinghurst, M. (1999), Marker tracking and hmd calibration for a video-based

augmented reality conferencing system, in ‘Proceedings 2nd IEEE and ACM International

Workshop on Augmented Reality (IWAR’99)’, IEEE, pp. 85–94.

Khoury, H. M. & Kamat, V. R. (2009), ‘Evaluation of position tracking technologies for user

localization in indoor construction environments’, Automation in construction 18(4), 444–

457.

Khoury, R. E. (2019), ‘Google maps hits 5 billion downloads on the play store, does it after

youtube but before the google app’.

URL: https://www.androidpolice.com/2019/03/09/google-maps-hits-5-billion-downloads-on-the-play-store-does-it-after-youtube-but-before-the-google-app/

Kim, T., Hwang, S., Kim, S., Ahn, H. & Chung, D. (2019), ‘Smart contact lenses for augmented

reality and methods of manufacturing and operating the same’. US Patent 10,359,648.

Klepper, S. (2007), ‘Augmented reality—display systems’, Technische Universitaet Muenchen,

Munich, Germany, Jul 4.

Koch, C., Neges, M., König, M. & Abramovici, M. (2014), ‘Natural markers for augmented

reality-based indoor navigation and facility maintenance’, Automation in Construction

48, 18–30.

Koyuncu, H. & Yang, S. H. (2010), ‘A survey of indoor positioning and object locating systems’,

IJCSNS International Journal of Computer Science and Network Security 10(5), 121–128.

130

https://www.androidpolice.com/2019/03/09/google-maps-hits-5-billion-downloads-on-the-play-store-does-it-after-youtube-but-before-the-google-app/

Lee, K. (2012), ‘Augmented reality in education and training’, TechTrends 56(2), 13–21.

Lee, L.-H. & Hui, P. (2018), ‘Interaction methods for smart glasses: A survey’, IEEE access

6, 28712–28732.

Li, N. & Becerik-Gerber, B. (2011), ‘Performance-based evaluation of rfid-based indoor location

sensing solutions for the built environment’, Advanced Engineering Informatics 25(3), 535–

546.

Magic Leap (2021), ‘Magic leap 1’.

URL: https://www.magicleap.com/en-us/magic-leap-1

Martin, P. S. (2020), Mojo vision nanoleds for invisible computing, in ‘Light-Emitting Devices,

Materials, and Applications XXIV’, Vol. 11302, International Society for Optics and Pho-

tonics, p. 1130204.

MAXST (2019).

URL: http://maxst.com/

Microsoft (2021), ‘Hololens 2-overview, features, and specs: Microsoft hololens’.

URL: https://www.microsoft.com/en-us/hololens/hardware

Mojo Vision Inc. (2021), ‘What if tomorrow you could...’.

URL: https://www.mojo.vision/

Montaser, A. & Moselhi, O. (2014), ‘Rfid indoor location identification for construction projects’,

Automation in Construction 39, 167–179.

Moschoyiannis, S. (2018), ‘Week 3: Systems development lifecycle (sdlc) & intro to require-

ments’.

Motamedi, A., Soltani, M. M. & Hammad, A. (2013), ‘Localization of rfid-equipped assets during

the operation phase of facilities’, Advanced Engineering Informatics 27(4), 566–579.

Neges, M., Koch, C., König, M. & Abramovici, M. (2017), ‘Combining visual natural markers and

imu for improved ar based indoor navigation’, Advanced Engineering Informatics 31, 18–31.

Niantic, Inc. (2020), ‘Catch pokémon in the real world with pokémon go!’.

URL: https://www.pokemongo.com/en-gb/

131

https://www.magicleap.com/en-us/magic-leap-1
http://maxst.com/
https://www.microsoft.com/en-us/hololens/hardware
https://www.mojo.vision/
https://www.pokemongo.com/en-gb/

Park, C.-S., Lee, D.-Y., Kwon, O.-S. & Wang, X. (2013), ‘A framework for proactive construc-

tion defect management using bim, augmented reality and ontology-based data collection

template’, Automation in construction 33, 61–71.

Parviz, B. A. (2009), ‘For your eye only’, Ieee Spectrum 46(9), 36–41.

Pixabay (2021), ‘Stunning free images & royalty free stock’.

URL: https://pixabay.com/

PTC (2020), ‘Vuforia engine: Create ar apps and ar experiences’.

URL: https://www.ptc.com/en/products/vuforia/vuforia-engine

QD Laser, I. (2020), ‘Retissa display ii’.

URL: https://en.retissa.biz/retissa-display-ii-e

Rauschnabel, P. A., Brem, A. & Ro, Y. (2015), ‘Augmented reality smart glasses: definition, con-

ceptual insights, and managerial importance’, Unpublished Working Paper, The University

of Michigan-Dearborn, College of Business .

Razavi, S. N. & Moselhi, O. (2012), ‘Gps-less indoor construction location sensing’, Automation

in Construction 28, 128–136.

reacTIVision 1.5.1 (n.d.).

URL: http://reactivision.sourceforge.net/

Rekimoto, J. (1998), Matrix: A realtime object identification and registration method for aug-

mented reality, in ‘Proceedings. 3rd Asia Pacific Computer Human Interaction (Cat. No.

98EX110)’, IEEE, pp. 63–68.

Rekimoto, J. & Ayatsuka, Y. (2000), Cybercode: designing augmented reality environments with

visual tags, in ‘Proceedings of DARE 2000 on Designing augmented reality environments’,

pp. 1–10.

Rohs, M. (2005), Visual code widgets for marker-based interaction, in ‘25th IEEE International

Conference on Distributed Computing Systems Workshops’, IEEE, pp. 506–513.

Rohs, M. & Gfeller, B. (2004), Using camera-equipped mobile phones for interacting with real-

world objects, na.

132

https://pixabay.com/
https://www.ptc.com/en/products/vuforia/vuforia-engine
https://en.retissa.biz/retissa-display-ii-e
http://reactivision.sourceforge.net/

Royce, W. W. (1987), Managing the development of large software systems: concepts and

techniques, in ‘Proceedings of the 9th international conference on Software Engineering’,

pp. 328–338.

Rustagi, T. & Yoo, K. (2018), Indoor ar navigation using tilesets, in ‘Proceedings of the 24th

ACM Symposium on Virtual Reality Software and Technology’, pp. 1–2.

Sako, Y., Iwasaki, M., Hayashi, K., Kon, T., Nakamura, T., Onuma, T. & Tange, A. (2016),

‘Contact lens and storage medium’. US Patent App. 14/785,249.

Schechter, S. (2020), ‘What is markerless augmented reality?’.

URL: https://www.marxentlabs.com/what-is-markerless-augmented-reality-dead-reckoning/

Schenker Technologies GmbH (n.d.), ‘Meta 2 - exclusive augmented reality development kit’.

URL: https://www.schenker-tech.de/en/meta-2/

Shibata, T. (2002), ‘Head mounted display’, Displays 23(1-2), 57–64.

Silva, R., Oliveira, J. C. & Giraldi, G. A. (2003), ‘Introduction to augmented reality’, National

laboratory for scientific computation 11.

Sutherland, I. E. (1968), A head-mounted three dimensional display, in ‘Proceedings of the

December 9-11, 1968, fall joint computer conference, part I’, pp. 757–764.

Teizer, J., Venugopal, M. & Walia, A. (2008), ‘Ultrawideband for automated real-time three-

dimensional location sensing for workforce, equipment, and material positioning and track-

ing’, Transportation Research Record 2081(1), 56–64.

Thomas, B. H., Marner, M., Smith, R. T., Elsayed, N. A. M., Von Itzstein, S., Klein, K., Adcock,

M., Eades, P., Irlitti, A., Zucco, J. et al. (2014), Spatial augmented reality—a tool for 3d

data visualization, in ‘2014 IEEE VIS International Workshop on 3DVis (3DVis)’, IEEE,

pp. 45–50.

Thomas, P. & David, W. (1992), Augmented reality: An application of heads-up display tech-

nology to manual manufacturing processes, in ‘Hawaii international conference on system

sciences’, pp. 659–669.

Time (2019), ‘Time immersive app brings stories to life in ar and vr’.

URL: https://time.com/longform/time-immersive-app/

133

https://www.marxentlabs.com/what-is-markerless-augmented-reality-dead-reckoning/
https://www.schenker-tech.de/en/meta-2/
https://time.com/longform/time-immersive-app/

Unity Technologies (2021a).

URL: https://unity.com/

Unity Technologies (2021b), ‘Unity’s ar foundation framework’.

URL: https://unity.com/unity/features/arfoundation

Vertex42 (2020), ‘Simple gantt chart’.

URL: https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html

ViewAR GmbH (2021), ‘Find the right augmented reality solution for your use case’.

URL: https://www.viewar.com/solutions/

Wagner, D. & Schmalstieg, D. (2007), ‘Artoolkitplus for pose tracking on mobile devices’.

Wagner, D. & Schmalstieg, D. (2009), History and future of tracking for mobile phone augmented

reality, in ‘2009 International Symposium on Ubiquitous Virtual Reality’, IEEE, pp. 7–10.

Wang, X., Kim, M. J., Love, P. E. & Kang, S.-C. (2013), ‘Augmented reality in built envi-

ronment: Classification and implications for future research’, Automation in construction

32, 1–13.

Wikitude (2020), ‘Augmented reality based on image recognition and tracking’.

URL: https://www.wikitude.com/augmented-reality-image-recognition/

Wikitude (2021a), ‘Object and scene tracking feature in augmented reality’.

URL: https://www.wikitude.com/augmented-reality-object-scene-recognition/

Wikitude (2021b), ‘Wikitude augmented reality: the world’s leading cross-platform ar sdk’.

URL: https://www.wikitude.com/

Woodman, O. J. (2007), An introduction to inertial navigation, Technical report, University of

Cambridge, Computer Laboratory.

Zhang, X., Fronz, S. & Navab, N. (2002), Visual marker detection and decoding in ar systems:

A comparative study, in ‘Proceedings. International Symposium on Mixed and Augmented

Reality’, IEEE, pp. 97–106.

Zhu, W., Jia, D., Wan, H., Yang, T., Hu, C., Qin, K. & Cui, X. (2015), ‘Waypoint graph

based fast pathfinding in dynamic environment’, International Journal of Distributed Sensor

Networks 11(8), 238727.

134

https://unity.com/
https://unity.com/unity/features/arfoundation
https://www.vertex42.com/ExcelTemplates/simple-gantt-chart.html
https://www.viewar.com/solutions/
https://www.wikitude.com/augmented-reality-image-recognition/
https://www.wikitude.com/augmented-reality-object-scene-recognition/
https://www.wikitude.com/

Ziegler, E. (2009), Real-time markerless tracking of objects on mobile devices, PhD thesis,

Citeseer.

135

	Introduction
	Overview
	Aims & Objectives
	Structure of the Report

	Literature Review
	Introduction
	Augmented Reality
	Marker-based Augmented Reality
	Markerless Augmented Reality
	AR Displays
	Head Mounted Displays (HMD)
	Handheld Displays
	Spatial Augmented Reality (SAR)

	Navigation
	Positioning and Tracking
	Pathfinding
	Graph Generation
	Route Calculation

	Graphical Instruction

	Existing Works
	Conclusion

	Planning
	Introduction
	System Development Life Cycle (SDLC)
	Software Development Life Cycle Methodologies
	Heavyweight Methods
	Lightweight Methods

	Project Plan

	System Analysis
	Introduction
	AR
	Navigation

	System Requirements and Specifications
	Introduction
	Purpose
	Scope
	Overview

	Overall Description
	Product functions
	User characteristics
	Constraints
	Assumptions and Dependencies

	Specific Requirements
	Functional Requirements
	Non-functional Requirements

	System Design
	Introduction
	Use Case Model
	User Interface (UI) Design
	Technology Choices

	Implementation
	Introduction
	Main Implementation
	Setting up
	UI
	Marker Scanning
	Tracking
	Pathfinding
	AR Navigation

	Additional Implementation
	Distance Calculation
	Zoom
	Navigation Line

	Testing/Validation
	Introduction
	Performance Testing
	Requirements Testing
	Functional Requirements
	Non-functional Requirements

	Evaluation

	Legal, Social, Ethical and Professional issues
	Introduction
	Legal issues
	Social issues
	Ethical issues
	Professional issues

	Conclusions and Future Work
	Overview
	Conclusions
	Future Work
	Academic Contributions
	Personal Development
	Final Statement

	Gantt Chart
	Floor Plan
	Screenshots of the Performance Testing without Markers
	Screenshots of the Performance Testing with Markers
	SAGE Form

